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Abstract

Cloud and Fog computing has emerged as a promising paradigm for the Internet of things (loT) and
cyber-physical systems (CPS). One characteristic of CPS is the reciprocal feedback loops between
physical processes and cyber elements (computation, software and networking), which implies that
data stream analytics is one of the core components of CPS. The reasons for this are: (i) it extracts
the insights and the knowledge from the data streams generated by various sensors and other
monitoring components embedded in the physical systems; (ii) it supports informed decision making;
(iii) it enables feedback from the physical processes to the cyber counterparts; (iv) it eventually
facilitates the integration of cyber and physical systems. There have been many successful
applications of data streams analytics, powered by machine learning techniques, to CPS systems.
Thus, it is necessary to have a survey on the particularities of the application of machine learning
techniques to the CPS domain. In particular, we explore how machine learning methods should be
deployed and integrated in cloud and fog architectures for better fulfilment of the requirements, e.g.
mission criticality and time criticality, arising in CPS domains. To the best of our knowledge, this
paper is the first to systematically study machine learning techniques for CPS data stream analytics
from various perspectives, especially from a perspective that leads to the discussion and guidance of
how the CPS machine learning methods should be deployed in a cloud and fog architecture.

Keywords: Cyber-physical systems (CPS), Machine learning, Cloud computing, Fog computing, Edge
computing, Analytics

[1][2](3][4]. The term cyber-physical systems
(CPS) was coined in the US in 2006 [5], with
1. Cyber physical systems: the realisation of the increasing importance of

Definitions and characteristics the interactions between interconnected
computing systems [6]. There have been various

I. Introduction and Motivation

Recent advances in computing, communication . .
] ] ) ] definitions of CPS, each of them throwing some
and sensing technologies have given rise to
) light at some of the relevant factors that revolve
Cyber-Physical Systems (CPS), not only one of o
] ] around CPS systems. Next, we will discuss some
the most prominent ICT technologies that . .
) ] of the most relevant in order to provide the
pervade various sectors of the physical world, . o
) ) readers with an educated vision on what cyber-
but also an integral part of everyday life ]
physical systems are:



* The National Science Foundation [7] defines
CPS as “Cyber-physical systems (CPS) are
engineered systems that are built from, and
depend upon, the seamless integration of
computational algorithms and physical

components. Advances in CPS will enable
capability, adaptability, scalability, resiliency,
safety, security, and usability that will far
exceed the simple embedded systems of
today. CPS technology will transform the
with
the

transformed the way people interact with

way people interact engineered

systems -- just as Internet has

information. New smart CPS will drive

innovation and competition in sectors such

as agriculture, energy, transportation,
building design and automation, healthcare,
and manufacturing.”

* Lee [1] defines CPS as “A cyber-physical

(CPS) is an

computers and physical systems. Embedded

system orchestration of

computers monitor and control physical
usually with feedback loops,

affect

processes,

where physical processes
computations and vice versa.”

* The National Institute of Standards and

Technology [4] defines the subject of CPS as

“Systems that integrate the cyber world with

the physical world are often referred to as

(CPS). The

computational and physical components of

cyber-physical systems
such systems are tightly interconnected and
coordinated to work effectively together,
sometimes with humans in the loop”

Despite their differences in length, detail and the
semantics of some terms, there are some
common characteristics that can be extracted
from these definitions. More specifically, we
argue that cyber-physical systems have the

following inherent characteristics:

* Integration of cyber elements (computation,

software and networking), engineered

elements (physical processes)
[21[71(8](9]1[10][11], and human factors [4]

* Reciprocal feedback loops between physical
processes and computations, (simulation and
decision making), sensing and actuation

elements, and monitoring and control
elements [4][1][8][9][12]

* It also encompasses a new generation of
embedded control systems (i.e. networked
embedded systems) consisting of networked
CPS components and tightly coupled and
interconnected cyber-physical processes that
require of cooperation and coordination.
(2][4][13]

In addition to this, the National Institute of

Standards and Technology also highlights the

fact that CPS require of the integration and

the

successful deployment of these systems [4].

cooperation of two technologies for
Firstly learning and predictive capabilities are
necessary to provide the integration of physical
and digital models and, more importantly,
provide the ability for the digital world to change
its autonomous logic based on the state of the
physical world (e.g., diagnostics and prognostics).
Secondly, it is stated that CPS require of open
architectures and standards that provide for
modularity and composability of systems, thus

allowing complex and dynamic applications.

CPS
cybernetics digital system (virtual and physical

Particularly, is an interconnected twin
worlds). The desired predictive capabilities in
CPS are the ones that require these systems to
potentially collect and analyse data from the
physical and digital world. In the end, the
predictive capability informs decision makers to
take appropriate actions or control to change the

course of physical world.

Finally it should be highlighted that current
applications of CPS include automotive systems,
manufacturing, medical devices, military systems,
assisted living, traffic control and safety, process
control, power generation and distribution,
energy conservation, HVAC (heating, ventilation
and air conditioning), aircraft, instrumentation,
water management systems,

trains, physical



security (access control and monitoring), asset
distributed
(telepresence, telemedicine) [1].

management and robotics

2. Data Stream Analytics in CPS

Mining data streams, acquired from various

sensors and other monitoring components
embedded in the physical systems, plays an
essentially role in CPS, as it extracts the insights
and the knowledge from the data streams,
provides learning and predictive capabilities for
decision support and autonomous behaviour,
the the
to the counterparts,

eventually facilitates the integration of cyber and

enables feedback from physical

processes cyber and
physical systems [14].

Silva et al. [15] provides a formal definition of a
data stream as:

A data stream S is a massive sequence of
data objects X', X% .., XV,
{X}¥_,, which is potentially unbounded
(N — o). Each data object is described
by an n-dimensional attribute vector

e, S =

Xt = [xji];;l belonging to an attribute

space Q that can be continuous,
categorical, or mixed.
Data streams feature massive, potentially

unbounded sequences of data objects that are
[15],
which leads to the fundamental shift in the data

continuously generated at rapid rates

analytics (information source) from traditional a
priori information alone based or off-line batch
The
challenge in stream analytics is the extraction of

approaches, to stream analytics. key

valuable knowledge in real time from a massive,
continuous and dynamic data stream in only a
single scan [16]. The reader should additionally
that the

devices,

consider insights extracted from

physical such as sensors, feature
perishable insights, i.e., they have to be provided
quickly, as otherwise they lose value to feed the
logic of the CPS software. In a CPS, data streams
are most beneficial at the time they are

produced, as any change reported by the data

(e.g. a sensor anomaly, a fault in the physical
process being sensed, or a change of system
state) should be detected as soon as possible,
and be acted upon, for example, via a change in
control policy or an output action. Furthermore,
as opposed to stream analytics for purely
software systems, the insights being revealed by
data streams in CPS are often tied to a safety-
critical action that must be performed to ensure

the health of the CPS itself [14].

Analysis of these ever-growing data streams
becomes a challenging task with traditional
analytical tools. Innovative and effective analytic
techniques and technologies are required to
operate, continuously and in real-time, on the
[17].
Machine learning is a discipline that aims to

data streams and other sources data

enable computers to, without being explicitly

programmed, automate data-driven model
building and hidden insights discovery, i.e., to
the the

resolution of a particular problem, via iterative

automate behaviour or logic for

learning from example data or past experience
[18][19][20].
many successful applications of machine learning,

In the past, there have existed

including systems that analyse past sales data to

predict customer behaviour, optimize robot
behaviour so that a task can be completed using
minimum resources, and extract knowledge from
bioinformatics data[20]. In this particular survey,

we will focus on

3. Cloud and Fog Computing

The interconnection of sensor and actuator
systems with decision making and analytics have
traditionally been performed by either local
static controllers or uploaded to the Cloud for
analysis. Supported by the paradigms of Internet
of Things (loT), Cloud computing experts propose
the virtualization of devices to provide their
data-based capabilities and their connection as a
service for users within a Sensing and Actuation
as a Service (SAaaS) [21] or as Things as a Service
(TaaS) [22]. Another role that Cloud computing
has played in supporting CPS is focused on the



analysis of the data received from devices. The
Cloud can provide a vast amount of processing
and storage resources which can be used to
analyse large amounts of data [23] or streams
[24]. These cloud capabilities are focused in
centralized and remote datacenters, which has
several drawbacks. The security aspect of storing,
analysing and managing data in the Cloud is an
increasing concern [25], while the remote nature
of the Cloud also has reliability and latency issues
[26].

The paradigm of Fog computing as proposed
by [27] extends the Cloud to the edge of the
network to better utilize resources available on
gateways and connected devices. This extension
allows data to be stored and processed locally to
increase reliability and security, while decreasing
the the
processing computing

between devices and
[28].

systems are typically characterized by a large

latencies
elements Fog

number of heterogeneous nodes, increased
mobility and a strong presence of streaming and
[27]. The
gateways used in fog systems vary from PC
based Computing Nodes [29], Mobile Devices [30]

and

real-time applications hosts or

resource constrained System on Chip
Devices (SoC) [31], routers, switches, set top
boxes, proxy servers and base stations [32].
These hosts all have varying storage, processing
and networking capabilities. While computing
nodes have the most resources and are most
reliable, they usually communicate with devices
using Ethernet or Wi-Fi based networks. The
mobile devices and SoC based devices have
fewer resources but provide a wider range of
wireless communication possibilities for polyglot
gateways [33], that can be used to connect to a
wider range of heterogeneous devices using low-
(M2M)
communication protocols. These distinguishing

power Machine to Machine
properties of the Fog are essential for providing
elastic resources and services to end users at the
edge of networks [28]. Fog computing is rapidly

finding its way into CPS and loT.

Adopting loT paradigms into CPS can provide
several types of services, such as weather
monitoring, smart grid, sensor and actuator
network in manufacturing environment, smart
building control and intelligent transport. These
services produce a large amount of data that
need to be processed for the extraction of

knowledge and system control [34].

The platforms deployed in Fog computing
vary based on hosts and application domains,
but they can be categorized in a similar way as in
Cloud computing. Infrastructure based platforms
allow users to deploy Virtual Machines (VM’s)
[35] or lightweight virtualization images [36].
Platform based solutions as in [37] provide a
platform for users for application style system
deployments. The third type of the platforms
provides networking and analytics capabilities
that the user can only configure and use without
the need to program and deploy their own
applications.

From the hosts’ perspective there are a
number of differences between the Cloud and
the Fog. The main difference is the resources of
these hosts, while the Cloud is considered to
have a virtually unlimited amount of storage and
the
lot more restricted so their

processing capabilities, in Fog these
resources are a
optimal management is crucial. When we look at
inter-host communication in the Cloud, due to
high speed networks these delays are uniform
and negligible. In the Fog, due to wireless
communication and varying network types these
delays can vary largely between hosts and their
value also increases dramatically. When we look
at device to host communication the Fog is
closer to these devices while the Cloud adds
significant networking delays when accessing
remote devices. When we look at the differences
from a platform’s perspective we can see that
Cloud solutions offer full control of resources
using VM’s, Docker style solutions or other
Platform as a Service (PaaS) options while Fog

solutions tend to share more interdependent



and constraint resources between users. Cloud
computing has well established business model
as compared to relatively new concept of Fog
this fact
recognised by researchers and efforts can be

computing. However, has been
seen in literature resolving billing, accounting,
monitoring and pricing for a Fog business model
[38].

CPS requires large computational capabilities
to process, analyse, and simulate the collected
data from sensors to make decisions and to
instruct controllers, in a limited time, to operate
the physical devices. The volume and velocity of
sensor and visualization data in CPS require large
storages to accommodate and software
applications to process them. The division of the
labour of latency tolerant and deep analytics
tasks between Fog and Cloud depends upon
processing power of the edge nodes and
application’s domain. The edge nodes with
limited computational power may only focus on
performance of latency sensitive tasks. On the
other hand, machine learning algorithms that
require intensive computing resources should be
executed in the Cloud. The cloud service model
with elastic and flexible architecture presents an
appropriate solution to support the emerging
CPS. However, the study on how data and
applications should be distributed between edge
devices and the cloud has derived little attention
academic and research
This the

decision on where machine learning methods for

from the industry

communities. obviously includes
stream analytics should be executed: the edge or
the

methods with different processing properties

cloud. The existing machine learning
have their own strengths and weakness, so
several methods or their variants have been
proposed to address diverse requirements from
different

example,

applications. Some methods, for
may cope better than others in
incomplete data sets or large data sets, while
some may require more computational power

than others.

Given the emerging and promising Cloud and
Fog computing architecture and the foreseeable
integration of CPS, more specifically the machine
learning based data analytics in CPS, to such an
architecture, it is necessary to investigate what
machine learning techniques have been
employed in the context of CPS, and further,
how they should be adapted and deployed in the
cloud-fog-edge architecture for better fulfilment
of the requirements of the application, such as
mission criticality and time criticality. This
research aims to identify and analyse the

properties of current well-known machine
learning methods employed in the context of
CPS and the characteristics of stream data in CPS
to provide a comprehensive study on their
relation. This will help determine how to map
data and machine learning methods to the Cloud
Edge the CPS

requirements. More specifically, we will focus on

and computing to meet

the analysis of the machine learning models

employed in stream analytics from the
perspective of the time complexity. This measure
will provide important indications to the

appropriateness of Edge computing to host tasks,
as it has limited computational powers, RAM and
storage whereas the cloud has more flexibilities,
capacities and capabilities to deal with resource-
tasks on demand. The

intensive required

qualities for the outputs and the types of results
(e.g.
significant

precision and accurate rates) have

influence on the resources and
response time of the selected methods, so the

correlation among them should be investigated.

To the best of our knowledge, this paper is
the first to systematically study the machine
learning based data stream analysis in CPS and
how they should be deployed in the emerging
cloud-fog-edge architecture.

The remainder of the paper is organized as
follows. We present the related work in section 2.
In section 3, the machine learning methods are
reviewed from the perspective of the functions
they provided for the typical CPS applications.



Then, the time complexities of general machine
learning techniques are provided in section 4,
based on which discussions on how these
machine learning methods should be deployed
are given for the purpose of effective and
efficient integration to the Cloud and Fog
computing architecture. We conclude the paper

with some future research directions.
II. Related work

Traditional CPSs may have limited computation
and storage capabilities due to the tiny size of
the devices embedded into the systems. Chaari
et al. [2] investigated the integration of CPSs into
the cloud computing, and presented an overview
of research efforts on the integration of cyber-
physical systems with cloud computing in three
(1) (2) big data
manipulation, virtualization.

remote brain,

(3)

specifically, real-time processing, enabled by

areas:
and More
offloading computation and big data processing
the
Nevertheless, Chaari et al. [2] did not include an

on cloud systems were explored.
exhaustive analysis of the emerging fog and edge

computing technologies, and how these

technologies should cooperate with CPS.

The authors in [16] and [15] presented a survey
on data stream analytics from the perspective of
clustering algorithms. Apart of summarizing the
unique characteristics of data stream processing
by comparison with traditional data processing,
in [16], data stream clustering algorithms were
categorized into five methods (i.e., hierarchical
methods, partitioning methods, grid-based
methods, density-based methods, and model-
based methods). Similarity, [15] analysed 13
most relevant clustering algorithms employed in
the context of data stream analytics. In addition
to the categories listed in [15], the authors in
[16] identified three commonly-studied window
models in data streams, i.e., sliding windows,
damped windows, and landmark windows.
Differently to [15] and [16], we do not solely

focus on clustering algorithms, but we also

extend analytics to other types of machine
learning algorithms.

In [20], the authors studied machine learning
techniques employed in transportation systems,
and identified various conventional machine
learning methods such as regression (linear
regression, polynomial regression and
multivariate regression), decision tree, artificial
(ANNSs),

machines (SVMs) and clustering. Despite the

neural networks support vector
useful insights provided by the work, the analysis
is exclusively carried out in the light of a very
particular type of CPS application; and further,
no advanced machine learning methods, e.g.

deep learning methods, was introduced.

The survey provided in [39] recognized the
changes that were needed to move from a
conventional technology-driven transport system
into a more powerful multifunctional data-driven
intelligent transportation system (D2ITS), i.e. a
system that employed machine learning and
other intelligent methods to optimize its
performance to provide a more privacy-aware
and people-centric intelligent system. The paper
identified both the data sources that drove
intelligent transport systems (ITS), (e.g. GPS,
Laser radar, seismic sensor, ultrasonic sensor,
meteorological sensor, etc.), and the learning
mechanisms for real-time traffic control and
transportation system analysis, such as online
learning (e.g., state-space neural network, real-
time Kalman filter, combination of online nearest
neighbour and fuzzy inference, hidden Markov
model, etc.), adaptive dynamic programming
(ADP), ITS-

Oriented Learning. The article offers a thorough

reinforcement learning (RL) and

and sound view on transport systems, but the
insights are not extrapolated to other CPS
domains and applications.

The authors in [40] presented an analysis on a
number of existing data mining and predictive
machine learning methods for big data analytics
with the goal of optimising the dynamic electrical
in the

market and consumers' expectations



smart grid. Similarity, authors in [41] review the
benefits and gaps of the combination of artificial
neural networks, genetic algorithms, support
the
forecasting of power grid. Another similar review

vector machines and fuzzy logic for
is carried out in [42] to analyse the big data
methods used to manage the smart grid. The
authors identified different predictive tasks that
can be carried out in the smart grid domain such
as power generation

management, power

forecasting, load forecasting, operation and
control fault diagnosis, and so forth. The authors
mapped to the corresponding statistical or
machine learning methods with the required

data inputs or sources.

III. Machine Learning Methods

in CPS Applications

1. Typical CPS Applications
Smart Grid:

Smart grid is a complex system ranging from
micro grid to national or international networks
different
managements and technologies. A smart grid is

involving levels of facilities,
considered as a cyber physical system as it
monitors and manages the power generation,
loading, and consumptions through a number of
sensors. These sensors gather the stream data
that is fed to analytic methods and control
to balance and distribute

systems power

generation and consumption [43].

Due to complexity and dynamics of power
market, and the nature volatile nature of
renewable energy, it is important to have a good
forecasting and prediction on the market trend
and energy production to correctly estimate the
amount of power to generate. In addition to this
purpose, applications of analytics to the smart
grid also include fault detection in infrastructure,
levels [10].

Machine learning is a promising tool to analyse

devices, system and application

the data stream and convert them to informed
decisions and actions.

Intelligent Transportation Systems (ITS)

An intelligent transportation system (ITS) is an
advanced application which aims to provide
innovative services relating to transport and
traffic management, and enable users to be
better and make safer,

informed more

coordinated, and smarter use of transport
networks. ITS brings significant improvement in
transportation system performance, including
reduced congestion and increased safety and

traveller convenience [44][45][46].

ITS is a typical CPS as it meets the core
characteristics of CPS. Enabled by Information
(ICT),
elements within the transportation system -

and  Communication  Technologies
vehicles, roads, traffic lights, message signs, etc.

- are becoming intelligent by embedding
microchips and sensors in them. In return, this
allows communications with other agents of the
transportation network, and the application of
data

techniques (e.g., machine learning techniques)

advanced analysis and recognition

to the data acquired from embedded sensors
Global

receivers,

such as inductive-loop detectors,
(GPS)-based

microwave detectors, and so forth. As a result,

Positioning  System
intelligent transportation
the

commuters, to highway and transit network

systems empower

actors in transportation system—from
operators, to the actual devices, such as traffic
lights, themselves—with actionable information
(that is, intelligence) to make better-informed
it's

when to travel; whether to

decisions, e.g. whether choosing which
route to take;
mode-shift (take mass transit instead of driving);
how to optimize traffic signals; where to build
new roadways; or how to hold providers of
transportation services accountable for results
[39][46].

Smart Manufacturing/Industrial 4.0:

Manufacturing applications, such as object

based
assembly operations, require accuracy of object

detection, force and torque sensor
detection, pose estimation and assembly to

within few micrometres. Moreover, this accuracy



has to pass the test of time and repeatability (i.e.,
the results should be precise).

Manufacturing in general and automotive
manufacturing in particular, requires operation
involving handling, inspection or assembly to be
completed in few seconds. For example, BMWs
mini plant in Oxford has a car coming of
[47].
Applications, such as welding, require real time
data

example, to track the position of joining plates

production line every 68 seconds

processing, analysis and results. For
on real time basis and adjust the movement of
weld guns on real time basis for precise and

accurate welding at high speed [48].

2. Machine Learning in a Nutshell

Machine learning is the discipline that aims to
make computers and software learn how to
program itself and improve with experience/data,
with the goal of solving particular problems [49].
Typically, a machine learning algorithm is a
specific recipe that tells a computer/software
how to improve itself from experience. A model
is the result of training a machine learning
algorithm with a set of data or experiences of a
given problem, and it can be employed to solve
future related problems.

The problems faced by machine learning

fall
categories according to the nature of the data

algorithms into one of the following

that is employed to improve the learning:
supervised learning, unsupervised learning, and
reinforcement learning. Next, we briefly discuss
each of these categories and describe some of

the most relevant techniques for each category:

* In supervised learning, the aim is learning a
mapping from an input to an expected
output that is provided by a supervisor or
oracle (i.e., labelled data) [18]. Depending on
the type of output, we say that we either
have a classification or a regression problem.
In the first case, we aim to produce a
discrete and finite number of possible

outputs, while in the second case the range

of possible outputs are infinite and numeric
[18].

* In unsupervised learning, there is no such
supervisor and only the input data is present.
The aim of these algorithms is finding
regularities in the input [18][20].

* Finally, reinforcement learning applies to the
cases where the learner is a decision-making
agent that takes actions in an environment
and receives reward (or penalty) for its
actions in trying to solve a problem. Thus,
the learning process is guided by a series of
feedback/reward [20]. the
learning algorithm is not based on given

cycles Here,
examples of optimal outputs, in contrast to
supervised learning, but instead it must
discover them by a process of trial and error
(50]

Next, we describe some of the most usual
machine learning algorithms employed in the
context of CPS data stream analytics.

Decision Trees and random forests:

A decision tree is a supervised machine learning

algorithm that is organized in a tree-like

hierarchical structure composed by decision
nodes and leaves. Leaves represent expected
outputs, and decision nodes branch the path to
one of the expected outputs according to the
value of a specific input attribute. Decision tree
algorithms exist in the form of classification and
regression algorithms [18]. One of the main
advantages of decision trees is that the model is
human readable and understandable.

A random forest is an ensemble of random trees
constructed by means of bagging. By this process,
a training dataset of N samples is divided into k
different datasets of N’ samples uniformly
sampled with replacement from the original
dataset, and consisting of a random selection of
the input attributes. Then, each dataset is
employed to train a different decision tree,
guided by the heuristic that the combination of
the resulting models should be more robust to

overfitting. Each tree provides an output that



can be aggregated by a wide variety of rules
[51][52].

Artificial Neural Networks (ANNs) and variants:

ANNs are machine learning algorithms that
resemble the architecture of the nervous system,
organized as interconnected networks of
neurons organized in layers. These versatile
algorithms are typically employed for supervised,
unsupervised, and reinforcement learning. The
of the

transformed by

inputs network (input layer) are

weighted (non) linear
combinations that generate values that can be
further transformed in other layers of the
network until they reach the output layer. Due to
their ability to represent potentially complex
the the

expected output, ANNs, such as the multilayer

relationship between inputs and
perceptron (MLP), have gained popularity in
machine learning and data analytics realm. The
multilayer perceptron is a nonparametric
estimator that can be used for both classification

and regression.

Convolutional Neural Networks (CNNs) exploit
translational invariance within their structures by
extracting features through receptive fields and
learning by weight sharing. CNNs usually include
two parts. The first part is a feature extractor,
which data
automatically and is composed of multiple

learns features from raw
similar stages and layers. The second part is a
trainable fully-connected MLP or other classifiers
such as SVM, which performs classification based
on the learned features from the previous part

[53][54].

Recurrent Neural Networks (RNNs) are a family
of neural networks that has gained popularity in
the last few years [55], and they are of special
relevance to stream analytics due to this
characteristic. In addition to this, the surge of
data and computing power present in the last
decade have given rise to deep neural networks
[56] that stack multiple non-linear layers of
neurons to  represent

more  complex

relationships between inputs and outputs or

more efficient representations of the inputs. For

various closely related definitions of deep

learning, please refer to [56].
Support Vector Machines (SVMs):

Support vector machines (SVMs) are supervised
learning methods that classify data patterns by
identifying a boundary or hyperplane with
maximum margin between data points of each
[20][51]. The

machine is fundamentally a two-class classifier,

class/category support vector
although multiclass classifiers can be built up by
combining multiple two-class SVMs. Despite the
fact that
classification tasks, SVMs have been further

they were initially devised for

extended to regression problems [57].
Bayesian networks and variants

Bayesian networks are probabilistic graphical
models based on directed acyclic graphs where
the nodes are random variables and the direct
arcs indicate the direct influences, specified by
the conditional probability,
random variables [18][58].

between two

Some popular machine learning algorithms such
as Naive Bayes, a popular supervised classifier,
and Hidden Markov models (HMMs) can be
considered as special cases of Bayesian networks.
The second specializes at processing sequences
of outputs by learning implicit states that

[18] [50]. This paradigm has
been used for both supervised and unsupervised

generate outputs

tasks.
Evolutionary computation:

Evolutionary Computing is the collective name
for a range of problem-solving techniques based
on the principles of biological evolution, such as
natural selection and genetic inheritance. The
fundamental metaphor  of
this
evolution to a particular style of problem solving

evolutionary

computing relates powerful natural
— that is a pseudo trial-and-error guided by the
value of a given fitness function that measures
the goodness of the evolved individual/solution

[59]. Evolutionary computing techniques mostly



involve metaheuristic optimization algorithms,

such as genetic algorithms and swarm

intelligence. Genetic algorithms have been
employed in supervised[60], unsupervised [61],

and reinforcement learning problems[62].
Clustering:

Clustering is an unsupervised family of
algorithms that involve processing data and
partitioning the samples into subsets known as
clusters. The aim of this process is to classify
similar objects into the same cluster while
keeping dissimilar objects in different clusters
[16]. The separation criteria may include (among
others) maximization of similarities inside
clusters, minimization of similarities between
different clusters, and minimization of the
distance between cluster elements and cluster
centres. One of the most popular clustering
algorithms is called k-means clustering where k

denotes the number of clusters.
Self-organizing map (SOM):

SOM
widely applied to clustering problems. SOM

is an automatic data-analysis method

represents a distribution of input data items
using a finite set of models. These models are
automatically associated with the nodes of a
regular grid in an orderly fashion such that more
similar models become automatically associated
with nodes that are adjacent in the grid, whereas
less similar models are situated farther away
from each other in the grid. This organization, a
kind of similarity diagram of the models, makes it
possible to obtain an insight into the topographic
of data,
dimensional data items [63].

relationships especially of high-
Q-learning:

Q-learning is a kind of reinforcement learning
technique that is a simple way for agents to learn
how to act optimally in controlled Markovian
domains. It amounts to an incremental method
for dynamic programming which imposes limited
computational demands. It works by successively
improving its evaluations of the quality of
particular actions at particular states [64].

3. Machine Learning Methods in CPS

Table 1: Overview of machine learning methods in the context of CPS

ML Method Domain Functional Category Task Reference
ANN Smart Grid Forecasting/Prediction/Regression Electrical Power prediction, [65][66][67][6
load forecasting 8][69][41]
Transport Pattern Recognition/ Clustering Behaviour/Event Recognition [51]
Forecasting/Prediction/Regression traffic flow features [70]
road-side CO and NO2 [71]

concentrations estimation
travel time prediction

[72][73][74]

Classification obstacle detection and [75]
recognition
Image Processing [76]
Manufacturing Forecasting/Prediction/Regression/op | Energy Consumption/ Process [77]1 (78]
timization parameters optimisation
Random Forest Smart Grid Forecasting/Prediction/Regression demand side load [65][79]
forecasting/Price forecasting
Anomaly/Fault Detection Power record faults [80]
Transport Pattern Recognition/Clustering Behaviour/Event Recognition [51]
Manufacturing Anomaly/Fault Detection Tooling wear/ Errors detection [81] [82] [83]
SVM Smart Grid Forecasting/Prediction/Regression Price Prediction [84][85]

Electrical Power prediction,

[86][67][69](8
7]

Anomaly/Fault Detection

Non-Technical Loss detection

[69][88](89]

Blackout Warning

[86] [90]




Power Line Attacks [90]
Transport Classification Unintentional vehicle lane [91]
departure prediction
Obstacles classification [92]1[75]
Pattern Recognition/ Clustering Behaviour/Event Recognition [51][93]
Anomaly/Fault Detection Mechanism Failure [94]
Forecasting/Prediction/Regression Travel time prediction [95]1[74]
Manufacturing Forecasting/Prediction/Regression Machine Maintenance [96]
Design / Configuration Feature Design; Production [971[98]
Processing
Anomaly/Fault Detection Quality Control [99][100]
Smart Home Pattern Recognition/ Clustering Activity recognition [101][102]
Decision tree Smart Grid Anomaly/Fault Detection fault detection [103] [104]
predict an energy demand
Forecasting/Prediction/Regression [104]
Transport Forecasting/Prediction/Regression To predict the traffic [105] [106]

congestion level and pollution
level; bus travel time

[106]

Anomaly/Fault Detection Cyber Attacks / detect [107]
stereotypical motor
movements
Manufacturing Classification/Diagnosis Quality Control/Fault diagnosis | [108][109]
Bayesian Network Transport Classification Event and behaviour detect [51]
Smart Grid Anomaly/Fault Detection Non-technical losses and fault [103]
detection
Manufacturing Anomaly/Fault Detection Fault detection in the [110]
production line
Forecasting/Prediction/Regression Tool wear prediction/Energy [111][112]
consumption prediction
Self-Organising Map | Transport Clustering Obstacle detection and [75]
recognition
Evolutionary Smart Grid Optimisation/ Forecasting/Prediction Short Term load forecasting [113]
Computing
Swarm Computing Smart Grid Optimisation economic load [114][115]
dispatch/feature Selection
Manufacturing Anomaly/Fault Detection/Process Fault detection, classification [116][117][11
optimisation and location for long 8]
transmission lines/Process
optimization
Automatic fault diagnosis of
bearings
HMM Smart Grid Optimisation . o [119]
Optimal decisions on smart
home usage
Manufacturing Anomaly/Fault Detection . . . [117][120]
Automatic fault diagnosis of
bearings
Reinforcement Smart Grid Optimisation Aided Optimal Customer [119]
learning /Q- Decisions for an Interactive
learning-based ADP Smart Grid
algorithm Transport Optimisation the road latent cost [121]
. Smart Grid Forecasting/Prediction/classification/ Building Energy consumption [122]
Deep Learning/ Transport Regression Traffic flow prediction; [123][124][12
Autoencoder . .
processing roads images / 5] [126] [94]
model/ > .
X commanding Steering;
convolutional . .
detecting train door anomaly
neural network -
CNN)/ R ¢ and predicting breakdowns
( )/ Recurren Anomaly-based detection of
Neural Networks . -
(RNNS) malicious activity
Other To classify various human [54]
Other activities; To detect congestive

heart failure




Table 1 shows an overview of machine learning
methods where they have been used in the loose
context of CPS. They have been used to carry
out tasks in three different applications and
domains: smart and

grid, transport

manufacturing.

ANN is one of the most popular methods having
the
applications, as it is capable of doing long term

been wused in various domains and

forecasting by regressing the stream data
generated by multiple interdependent factors or
single variable from time series to predict the
trend in power generations, consumptions and
bus travel time estimations. For example, in
smart grid and manufacturing, ANN is efficient to
predict the consumption of consumer and
the

load management power

production line for demand side
management and
generation management. Only few researchers
use ANN in the

predication [84][68], as it requires considerable

real-time or short-term
time to process and tune the parameters before
it can be deployed. Most applications require
large amount of input data and training time to
produce meaningful model with certain degree
of accuracy and confidence [65][41][70]. Even
though ANN can work alone and produce
acceptable results, but it often works with other
learning methods such as SVM, GA, Bayesian etc.
ANN to

efficiency or modelling accuracy [41]. In the table,

to compliment improve training
term ANN was broadly used, but it has a lot of
variants with various activation functions and
structures and form a hybrid model to meet the
classification,
different
applications. Ref [41] has carried out detailed
hybrid
approaches. Here, we classify applications into

purposes such as forecasting,

clustering, and regression for

analysis of these variations and
this category using ANN as the main body for

their solutions.
SVM has been widely adopted to address the
issues in product feature design, fault detection,

forecasting, clustering and pattern recognition

the domains such as

manufacturing, smart grid, transportation as well

across application

as smart home due to its maturity and
transparency. The method can take different
sizes of input data to carry out the classification
and regression, so it has been used in the
applications that require short response time
such as [85][86]. It also used in conjunction with
other machine learning methods such as ANN,
and Bayesian etc. by exploiting its characteristics
to provide complimentary functions to address
complex problems [68][96][97]. The authors in
[97] used a trained SVM classifier from the
classified design examples such as features and
which
hierarchical clustering, to recommend different

components, are obtained from a
Additive Manufacturing design features. In the
case study, it only shows 21 design features from
over hundreds that were used to train and to

build model.

The faults in products or tools in manufacturing
can lead to a big loss of time and a serious
if they are not detected and
[81]and [82]
reported the use of the Random forest to

consequence

resolved earlier. Authors in
analyse the big data for tooling condition
monitoring in milling production and silicon in
semiconductor Manufacturing. It also has been
used in predicting the short term electricity price
from the historical data [79] and detecting the
false electricity records from the sensors [80].
Ref [51] reported the use of Random forest to
model a driver profile effectively. From these
reports, they all require a reasonable amount of
historic data for the training and to make the
classification and time not

accurate was

considered as a crucial factor in these

applications.

is a well-known method for
predicable that the
researchers have used it to detect the faults in

Decision tree
classification, so it is

the power system and motor movement and for
quality management in the production. It also
has been used to predict the energy demand,



bus travelling time, and to determine the

correlation between traffic congestion and air

pollution.
The accuracy of fault detection, quality
prediction, classification and rare events

forecasting are associated with probabilities, as
all the input factors cannot be certain due to the
dynamic environments and complex human
The
network is a well-studied method to model

behaviour and interactions. Bayesian
complex probability networks as it has been used
in different applications to explain the possible
occurrences of outputs with input variables. It
does not require large amount input data to
form the network, if the probability of variables
is known. The network can be large and complex,
but its processing
[51][103][110]

characteristics in these applications.

time is linear. Ref

showed the consistent

Table 1 also shows where the Machine Learning
(ML) methods have been used across four
application domains and the tasks have been
carried out to gain the benefits of analyzing and
interpreting large volume of data streams
generated. The most common area for the
researchers and industry practitioners adopting
the methods is to increase accuracy of
and forecasting in their CPS
applications. The authors in
[41][65][66][671[68][69][79][104]

adoption of ML to predict electrical power

predication

reported

consumption, demand, supply and load in order
to improve demand response management in
smart grid. ML is a well employed tool to predict
traffic flow, air population emitted by cars, traffic
congestion and travel time by transport [70][71]
[72][73][74][105][106][94][123][124][125][126].

ML also has
manufacturing by

been extensively applying in
predicting energy
consumption in production line, machine
and tool wearing [77] [78] [102]

Diagnosis and Fault detection is

maintenance,
[111][122].
another function the ML has been widely used in
manufacturing to detect root cause of power

faults in the production, tooling wearing and

mechanic  faults, cause of the fault
components/products, and quality control
[51][99][100][110][117][120]. Smart grid also has
several ML applications to anomaly and fault
detections such as non-technical loss detection,
blackout warning, power line and cyber attacks,
faults in demand management and power line

faults [69][88][89][86][90][80][103][104] .

The utilization of ML for fault
diagnosis and prevention of cyber attacks in

mechanical

transport system can be more explored, as only
two [94][107] reported the benefits of ML in this
area. ML is also a popular solution to configure
plant/production, electrical
load/dispatch, and
forecast short term in electricity usage and etc.
[751[97][98][113][119][121]. ML has

exploited in other applications such as clustering

optimize
reduce road latent cost,
been

road obstacles, classifying driving behaviours and
traffic incidents and improving production
quality [51][75][91][108][109].

From Table 1, it can be seen that functions of
MLs have brought various benefits to different
applications and they have generated different
levels of impacts in various areas, but the
potentials of MLs are not fully realized yet, as
they still evolve and their complexity may hinder
the popularities.

IV. Temporal Complexity

Analysis
Machine learning algorithms are able to learn
from selected samples to derive rules, trends,
patterns or properties of a true population. The
concept or hypothesis space, however, can be
large and complex that cannot be learned or
modelled in time

polynomial learning

algorithms, but exponential time. In these
cases, learning to achieve highly accurate
results by exhaustively exploring parameter
values may not be possible in computational
term, but approximation to the true value. As it
is natural, the goal of all machine learning

applications is to minimise the differences



between the target concept and the output

produced by the trained models. The
representation, quality and quantity of the
selected samples, which are input parameters,
to the learning algorithms are important
attributes to increase the possibility of the
successful learning. The probability of reaching
successful learning by increasing accuracy of
approximating to the target concept also
depends on the complexity of learning and
time. Learning is a trade-off between time and
accuracy. In principle, the higher accuracy, the
more time is required for training. Information
and computation are two main dimensions to
measure the complexity of learning algorithms.
The sample complexity is concerned with
number of training samples, distribution and
sufficiency leading to accuracy of prediction,
classification or etc. The computational
complexity of a solution method is to measure
the computational resources required to derive
the concepts from the training data. This can
be further classified into time and space
complexity. Space complexity denotes the
memory required for the computational model
being selected to store the solution. The time
complexity is measured by the number of
computational executions in the model to reach
or approximate to the target concept. In this
interested in time

paper, we are more

complexity with computational complexity than

others. We intend to show theoretical
complexity rather than the actual runtime of
the algorithms which will be various depending
on its operating computational environment

including hardware and software.

Table 2 shows a list of machine learning
methods used by the applications illustrated in
Table 1 and their

complexities, represented in big O, and the

corresponding time
factors contributing to the complexities. Since
there are many different variants to each
machine learning method, it is not feasible to
list them exhaustively, but some examples to
illustrate measurement of complexity. For
example, varieties of Bayesian Network models
derived from various approximate and exact
inference algorithms to infer unobserved
variables, at least ten common ones, can lead to
different computational complexities. Several
hybrid learning methods including at least two
existing learning methods have been proposed
to resolve or improve the insufficiency of one
method that

measurement of the

individual complicate the
runtime due to the
interdependency, as one method may reduce
the complexity for the other in the model, but
the overall complexity calculation still need to
the methods
algorithms and their time complexity can be

found in [127].

consider all involved. More

Table 2: Time complexity of some of the most common machine learning algorithms

. . Theoretical Time
Machine learning method . Factors
complexity
o ) ) M: size of the training samples
Decision Tree Learning[128] O(M-N7) )
N: number of attributes
Hidden Markov model O(N*M) N: number of states
Forward-backward pass [52] M: number of observations
n: input variables
] M: number hidden neurons
Multilayer Perceptrons [127] O(n-M-P-N-e)
P: number outputs
N: number of observations




e: Number of epochs

Deep Learning (Convolutional Neural
Networks) [129]

O(D-N-L-5*-M*-e)

L: number of input variables
N:number of filters (width)

S: spatial size (length) of the filter
M:size of the output.

D:number of convolutional layers
(depth)

e: number of epochs

Support vector machine [130]

O(N®) or O(N?)

N: vectors
C: upper bound of samples
N? when C is small; N> when C is big

C: number of genes/chromosome

Genetic algorithms [127] O(P-logP:I-C) P: population size
I: Number of iterations
N:number of samples
Radom forest [52][131] (K-N- log N) ) ]
K:input variables
. N: input vector size
Self-organizing Map [132] O(N-C) .
C: cycle size
Reinforcement learning [133] O(N?) N:number of steps to reach the goal

Particle swarm optimization (PSO) [134]

O(P+Gen-P-D)

P: number of particles
D: number of dimensions

Gen: number of generations

Bayesian Network (exact learning models
of bounded tree-width)[135]

O(3N'N(w+1))

N:size of nodes
W: width of tree.

For example, [119] used Q-learning algorithms to
model the interaction with users in smart home
with maximum 20 steps to interact with users
before it can propose appropriate
recommendation. Its theoretical time complexity
is up to 20° and the authors have concluded that
Q-learning algorithm outperformed greedy or
[119] in their

simulated cases. Figure 1 shows the complexity

random decision strategies
level in big O when the number of steps
decreases in the simulation. The authors did not
report the actual runtime, so it cannot be
the
experimental one.

correlated theoretical complexity to

‘ ——— Q-learning Complexity

Time Complexity

20 18 16 14 12 10
Number of Steps
Figure 1: Complexity level and number of steps in Q-
learning

Ref [66] used three machine learning methods,
SVM, LS-SVM and BPNN, for energy usage
forecasting over 283 households with 500 point
data (hours) for each. The total number of data
points for training in the experiments is 141,500
(283*500). In their empirical study, the
computational times of these methods are
335.39, 26.22, and 29.28 seconds respectively
over a laptop to produce reasonable accurate
results. The authors recommend running these




approaches in cloud and distributed computing
to improve the performance. SVM has better
accuracy in reducing errors, but it took more
time than others due to the overhead of using
GA to find key parameters for SVM. The BPNN
has more errors than the other two and it
requires a bit more runtime than LS-SVM. The
authors, however, did not include key parameter
values such as generations and input points etc.
for GA and BPNN, so to derive their time
complexity in relation to actual runtime cannot
be fulfilled. The time complexity of LS-SVM is
0(1415007). Figure 2 shows the time complexity
of LM-SVM by applying the data from [66] with
simulation output and the actual runtimes in
seconds.

This shows actual runtimes against the
complexity level and the correlation between
them without carrying out the actual

experiments, the researchers can estimate its
actual runtime by giving the number of samples
when the underlying machine or environment
has the same characteristics.

, =—=LM-SVM O in Log
10'°

Time Complexity
8@

10
0 5 10 15 20 25
Time (seconds)

Figure 2: Time complexity of LM-SVM

The authors in [136] report the applications of
Particle swarm optimization method to balance
different loads by considering price to dispatch
them. The test case one includes 6 factors
(dimensions), 6 generators (particles) and 100
generations to evolve, and its time complexity in
theory is 3606 (6+6*100*6) before it has a
satisfactory convergent result. In their test case
two, it increases to 7 factors, 40 generators and
so 40+40*400*7 (is the
112,040. In
another test case it has 5 factors, 20 generators,
and 400 generations (40,020 in O) and its actual
computational runtime is 0.29282 second that is

400 generations,

theoretical time complexity is

around 10 and 200 times slower than the other

approaches [136] in the simulation. Figure 3
shows the relationship between complexity and
actual runtime by extending the figures given in
the paper. The line is the time complexity in log
and the solid The
researchers can refer this to approximate the

line is actual runtime.

actual runtime of an application with the same
giving
parameter values of the learning method. The

computational resources by key

approximation is not rigid, as we assume that the
space complexity is changing linearly.

T

prsoﬁ\

T T T

o
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Complexity
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Figure 3: relationship between complexity and actual
runtime of particle swarm optimization method

For deep NN learning methods such as CNN, the
weights in the convolutional layers are trained
and updated in a similar way as traditional
ANNs/MLPs (Multilayer Perceptrons) except that
the number of filters and layers are orders of
magnitude higher than those in traditional MLPs.
The authors in [129] report their experimental
results on computational time complexity of a
CNN model by varying different key parameters
such as depth, filter size and number, width and
pooling layer etc. of the network to find their
trade-offs between two parameters to
investigate the overall performance in terms of
time complexity and output accuracy. We share
the same view with the authors [129] that
introducing computational time and memory
constraints can give better understanding the
value of machine learning methods in realistic

business applications.

The training of these deep NN models needs
massive resources (e.g. to accommodate the
training data) and time, they should be carried



out on the Cloud. However, the operation time
of these models is only proportional to the
number of neurons no matter how large the
training data is, the on-line analysis tasks can be
deployed on the Edge/Fog.

As it has been observed in this analysis, only a
few works report the empirical time complexity
of their approaches. Therefore, the estimation
on the empirical time complexity of a training
algorithm still has rooms for more extensive
study. This information may be vital for decision
making on-the-fly if a learning task can be
deployed in the edge devices.

V. Online Learning Methods

If we take a look at Table 2 we will observe that
the theoretical complexity of the classic learning
algorithms reported in the literature review
normally takes into consideration many terms
(e.g., number of samples, iterations, structure
parameters, etc.). In theory, this could result in
high order polynomial behaviour, which would
deter the deployment of the learning phase in
edge devices. This is because firstly over time,
more and more streaming data will be
accumulated and it is impractical and often
infeasible to accommodate large volumes of
streaming data in the machine’s main memory;
secondly, it is also infeasible to regularly
reconstruct new models from the scratch with
accumulated streaming data in real-time; further
CPS data streams feature the perishable insights,
i.e., information that must be acted upon fast, as
insights obtained from streaming data, such as
from sensors, quickly lose their value if they
were to be processed in ‘batch mode’) [16]. As a
result, a i.e.

new paradigm of learning,

incremental and On-line learning algorithms
should be adopted. Losing et al. [137] gives the
definition of incremental learning for supervised
learning as  below the

(we  change

notations/symbols for consistency reasons).

An
generates, on a given stream of training

incremental learning algorithm

data S1, S2..., SV, a sequence of models

HY, H% .., HN, where St is labeled
training data St = (X', YY) € R® X
{1,...,CtandH' :R™{1,...,Clisa
model function solely depending on
H™! and the recent p examples
St,. .., 8t7?P,
limited.

with p being strictly

[137] further
learning algorithms as

Losing et al. specify on-line

incremental learning
algorithms which are additionally bounded in
model complexity and run-time, capable of
endless/lifelong learning on a device with

restricted resources.

Incremental and on-line learning algorithms aim
for minimal processing time and space; and thus
fit in CPS data processing environments.

Losing et al. [137] evaluate eight popular

incremental methods representing different
algorithm classes such as Bayesian, linear, and
instance-based models as well as tree-ensembles
and neural networks. Experiments are carried
out to evaluate these algorithms with respect to
accuracy, convergence speed as well as model
complexity, aiming at facilitating the choice of
the best method for

However, it

a given application.

primarily covers supervised
incremental learning algorithms with stationary
datasets, although robustness of the methods to
different types of real concept drift are also

investigated.

Gama et al. [138] considers dynamically changing
and non-stationary environments where the
data distribution can change over time yielding
the phenomenon of concept drift, which applies
to most of the real world CPS applications.
Adaptive learning algorithms, defined as
advanced incremental learning algorithms that
are able to update predictive models online
during their operation to react to concept drifts,
are explored. Taxonomy for adaptive algorithms,
presented in four modules as memory, change
and loss estimation, is

detection, learning,

proposed; and the methods within each module



are also listed. Gama et al. [138] focuses on
online supervised learning.

Ade et al. [139] includes some unsupervised
incremental learning approaches that learn from
unlabelled data samples to adjust pre-learned
concepts to environmental changes. Most of the
incremental clustering algorithms for pattern
discovery rely on similarity measure between the
data points. An exemplary approach is called
Concept Follower (CF) that includes CF1 and CF2
[140]. CF1 and CF2 learn from unlabelled data
samples to adjust pre-learned concepts to
environmental changes. Initially, a supervised
label
concepts. When a new sample is collected, CF1

learner is used to learn and a set of
calculates the distance of the sample to all
concepts and the concept with the minimal
distance to the sample is identified. If the
distance is smaller than the predefined threshold,
CF1 considers the concept a match and then
slightly shifts, by a learning rate parameter,
towards the classified sample to adjust to the
concept drift; otherwise CF1 detects the abrupt
the

learning stage. Compared to CF1, CF2 supports

change and repeats initial supervised
problems areas with unbalanced sample ratio
between concepts. This is done by CF2 adjusting
all concepts in the proximity of the sample
instead of, as does CF1, adjusting only the

concept closest to the sample.

Next, we discuss on some of the most relevant
online approaches to the machine learning

algorithms identified in this article.

Artificial Neural Networks

Classically, artificial neural networks are trained
using a training set and optimization methods
such as gradient descent and backpropagation to
minimize a cost function correlated to the error
derived from the current state of the network.

The online version can adapt to the arrival of
new data consists of pre-training the network
with all the available training set, and then adapt
the pre-trained network by using stochastic

gradient descent over the new series of available
data. This type of setting would benefit from a
combination of both cloud technologies (i.e., for
pre-training the network), and edge computing
(i.e. for adapting the network).

While the use of stochastic gradient descent
batch like
backpropagation in a non-batch setting, there

allows adopting a algorithm
are specialized learning algorithms, called online
sequential learning methods, for training neural
networks in an online setting in which data
becomes available with time
[141][142][143][144]. They can be efficient and
more adequate for being deployed in an edge
device as they do not require to store past
training samples. The online sequential learning
methods tend to be ad-hoc for networks with
specific activation functions, or with specific
(e.g., hidden
the complexity of
represented by these networks may not be as

architectures single layer).

Therefore, problems
vast as the one represented by classic neural
networks or deep learning approaches.

Decision trees

The classic learning decision trees require that all
of the training samples are considered when
computing information gain [145]. This is hardly
applicable in a stream analytics context, as
training samples arrive constantly. Therefore, it
requires different to
properly
analytics context, which the trees can evolve

learning mechanisms

learn decision trees in a stream
from a stream of data. Some approaches with a
default tree structure provide a series of greedy
steps to adapt to the new training samples.
These ID5R [146],

adaptation of the popular ID3 learning algorithm

includes algorithm an
for stream data, and ITlI [147]. Nevertheless,
these greedy changes were in some cases

suboptimal and ended up in inappropriate

adaptations to change.

The other approach to learning decision trees
from streams is to maintain a set of statistics at



nodes and only split a node when sufficient and
statistically significant information is available to
make the  split. Hoeffding inequality
[148][149][150] are the backbones to these
approaches, which provide bounds for the
number of observations that are necessary to
obtain an estimated mean that does not differ
from the mean of the underlying random
variable. Some researchers have recently argued
that the assumptions underlying the Hoeffding
inequality are not appropriate when constructing
online trees. Some methods split at nodes of the
decision tree base on other modeling paradigms
such as McMiarmid’s bound [151], or Gaussian

processes [152].

Random forests

The general idea behind online random forests
consists of providing both a method to carry out
online bagging, and a method to carry out online
learning of random trees. Abdulsalam et al. [153]
take an approach that carries out online bagging
by dividing the incoming samples of data into
blocks with a certain size. Then, blocks of data
randomly selected are employed for either
training or testing a tree in the model. The
training block is redirected to a chosen tree, and
an online learning algorithm for trees is
employed to update the current tree. Later on,
the learning model is enhanced to adapt to the
random arrival of labeled examples in the stream,

with blocks of different sizes and frequency [154].

Another
process described above is employed by Saffari

alternative to the online bagging

et al. [155]. In this case, each new sample is
presented in a number of times that is controlled
by a Poisson distribution, to each random tree in
the model. Then, the random trees gradually
grow by creating random tests and thresholds at
decision nodes and choosing the best one after a

Other
bagging at the forest level, and the subsampling

approaches opt for avoiding online
is carried out at the tree level [156]. When a new
sample arrives to the random forest, this sample
is presented to all of the trees. Then, the
individual tree decides if the sample will be used
to influence the structure of the tree or used to
estimate class membership probabilities in the

leaf they are assigned to.

Support vector machines

Classification in support vector machines are
based on the idea of finding the maximum
margin hyperplane that separates elements from
different categories. By definition, one should
have access to the entire training dataset in

order to build such maximum margin
hyperplanes. Otherwise, there would be no
guarantee that estimated hyperplanes are

optimal. This assumption limits the applicability
of classic support vector learning algorithms to
an online setting, and it forces scholars to devise
new methods that are adapted to the online
setting.

The incremental approach to support vector
learning typically requires to determine if a new
sample should become a support vector that
modifies the current hyperplane. The algorithm
also needs to determine if previously calculated
support vectors still yield as relevant after the
observation of the new sample, and remove
those that are no longer relevant. Otherwise,
online approaches to support vector learning
incur in the risk of growing linearly with the
infinite number of samples [157]. To tackle this
problem, there have been a number of proposals
that aim to build a support vector model with
adequate predictive performance while also
minimizing the number of support vectors in the
resulting model [157][158][159][160].

number of statistics have been gathered that V1. Discussions

guarantee that the test is the best from the ones
randomly created at the decision node.

So far machine learning methods of various
categories, including some deep learning ones)
have been employed for various data streams



analysis purposes. Little literature has studied
the integration of these methods to the Cloud
and Fog computing architecture.

The very nature of CPS requires a computing
paradigm that offers latency sensitive monitoring,
intelligent control and data analytics for
intelligent decision making. In contrast to the
Cloud, the

applications at the edge of network, however

Fog performs latency-sensitive

latency tolerant tasks are efficiently performed
in the Cloud for deep analytics [161].

Cloud
scalable storage and processing services that can

computing provide on demand and

scale up to requirements of loT based CPS.

However, for healthcare applications,
manufacturing control applications, connected
vehicle applications, emergency response, and
other latency sensitive applications, the delay
caused by transferring data to the cloud and
back to the application becomes unacceptable
[162][163][164]. The

applications rely on the Fog for their time critical

latency sensitive
functionality. The adoption of Fog computing not
only greatly improves the response time of time
sensitive application but also brings some new
challenges such as business model, security
privacy and scalability etc. It is perceived that in
time critical services fog computing is cost
effective as compared to cloud computing due to
its less latency and in some cases due to spare
capacity of locally available resources. The view
is endorsed by study carried out in [163], which
shows that with high number of latency sensitive
applications Fog computing outperforms Cloud
computing

in term of power consumption

service latency and cost.

As generally the data stream analytics processes
the data in one scan due to the perishable
insights. Some algorithms, such as the cluster
removal approach in CURE and ROCK based HAC
(Hierarchical Agglomerative Clustering )
algorithms, are infeasible for streaming data as
they requires multiple scans of data [165]. In

addition, for memory-based methods such as

Parzen probability density model and nearest-
neighbour methods, as the entire training set
needs to be stored in order to make predictions
for future data points and a metric is required to
be defined to measures the similarity of any two
vectors in input space, they are both memory
consuming and generally slow at making
predictions for test data points, they also should
not be employed for data stream analysis, even

though the Fog computing is introduced.

ANN (MLP), DT and SVM are the most commonly
used machine learning methods in surveyed CPS.
In terms of accuracy, it is observed that the
performance of these machine learning methods
is task dependent. For example, ref [75] pointed
out that the best classifier differs according to
the weather conditions. The classifier based on
MLP behaves better than SVM (and SOM) for
sunny and foggy conditions, whereas for rainy
conditions, the SVM-based model is the most

Ref [166] that in
Stereotypical

concluded
Motor
(SMM) recognition, SVM appears to outperform

appropriate.
automatic Movements
DT on overall accuracy by ~6 percentage points
(although at times DT did outperform SVM),
regardless of feature set used. In terms of the
operation (classification or regression) time, ref
[107] discovered the noticeably lower detection
latency provided by DT while ref [76] ascertained
that SVM was not fast enough for real-time
classification (classification time being around
2.2 seconds) compared to ANN with seven
hidden nodes (classification time being around
100 milliseconds).

For those machine learning methods that need
massive training data and take iterations to
converge, such as ANN, HMM and reinforcement
learning methods, it is recommended to deploy
the training tasks onto the Cloud while deploy
the on-line analysis tasks on the Edge/Fog.

For deep NN learning methods such as CNN, the
weights in the convolutional layers are trained
and updated in the similar way as traditional
MLPs (Multilayer Perceptrons) except that the



number of weights and layers are orders of
magnitude higher than MLPs. As the training of
these deep NN models needs massive resources
(e.g. to accommodate the training data) and
time, they should be carried out on the Cloud.
However, the operation latency of these models
is only proportional to the number of neurons no
matter how large the training data is, the on-line
analysis tasks can be deployed on the Edge/Fog.

When machine learning methods are deployed
on the Edges, trade-offs are needed among
accuracy, operation time, and the parameters of
these methods such as sliding window sizes,
number of iterations and prediction/forecast
time lags [51][71].

data
proved effective in improving the performance

Applications dependent pre-processing
of the data analysis. For example, in ref [76],
before employing an ANN classifier, a simple

gradient detector and an intensity-bump
detector with loose (low) threshold values are
applied to quickly filter out non-lane markings.
As the remaining samples are much smaller in
number, the classification time was significantly
reduced. Due to space limitations, this paper
doesn’t

investigate the data pre-processing

techniques for machine learning methods in CPS.

The distributed
provided by Cloud and Fog computing may

and parallel environment
facilitate the execution of machine learning
methods (such as random forest) to further
reduce the classification time as the sets of sub-
tasks (such as the decision trees involved in
random forest) can be run in parallel.

The data stream properties also could affect the
choice of the methods. For example, fuzzy logic
is more capable of dealing with the fuzzy
information without requiring large volume of
samples, the existing deep learning methods will
require substantial number of samples in the
training process, and Rough set is good at
dealing with incomplete information. In addition,
ANN is likely more appropriate to deal with

multiple variants data sets than reinforce

learning methods..

Conclusion and Future Research

Directions
Data stream analytics is one of the core

components in CPS and machine learning
methods have proved to be effective techniques
of data analytics. The rise of Cloud and Fog
computing paradigm calls for the study of how
the machine learning based CPS data stream
should be

paradigm in

analytics integrated to such a
better the

requirements, such as mission criticality and

order to meet
time criticality, of the cyber physical systems.
This paper investigated and summarized the
existing machine learning methods for CPS data
stream analytics from various perspectives,
especially from the time complexity’s point of
view. The investigation led to the discussion and
guidance of how the CPS machine learning
methods should be integrated to the Cloud and
Fog architecture. In the future, more effective
and efficient machine learning methods should
be studied for analysing ever growing data
streams in CPS, such as taking advantages of
distributed and parallel environment provided by
the Cloud and Fog computing [167], developing
hierarchical and composable machine learning
methods that are well suited to partitioned
execution across the Cloud and the Edge,
studying transfer learning and continual learning
techniques to deal with the non-stationarity of
data streams. In the meanwhile, studies should
be carried out on the development of Cloud and
Edge systems that facilitate the CPS data stream
analytics by accommodating the discrepancy and
the heterogeneity between the capabilities of
edge devices and datacenter servers and among
the edge themselves; providing
uniformed APIs [168] and services [169][170],
and etc.

devices
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