
CPS	Data	Streams	Analytics	based	on	
Machine	Learning	for	Cloud	and	Fog	

Computing:	A	Survey	
Xiang	Feia,	Nazaraf	Shaha,	Nandor	Verbaa,	Kuo-Ming	Chaoa,	Victor	Sanchez-Anguixa,	Jacek	

Lewandowskia,	Anne	Jamesb,	Zahid	Usmana	
aa5861@coventry.ac.uk,	aa0699@coventry.ac.uk,	verban@uni.coventry.ac.uk,	csx240@coventry.ac.uk,	
ac0872@coventry.ac.uk,	aa6910@coventry.ac.uk,	anne.james-taylor@ntu.ac.uk,	ac1095@coventry.ac.uk,	

aFaculty	of	Engineering,	Environment	and	Computing,	
Coventry	University,	Coventry,	United	Kingdom	

bCollege	of	Science	and	Technology,	School	of	Science	&	Technology	
Nottingham	Trent	University,	Nottingham,	United	Kingdom	

Abstract	
Cloud	and	Fog	computing	has	emerged	as	a	promising	paradigm	for	the	Internet	of	things	(IoT)	and	
cyber-physical	 systems	 (CPS).	 	One	 characteristic	 of	 CPS	 is	 the	 reciprocal	 feedback	 loops	 between	
physical	processes	and	cyber	elements	(computation,	software	and	networking),	which	implies	that	
data	stream	analytics	 is	one	of	the	core	components	of	CPS.	The	reasons	for	this	are:	(i)	 it	extracts	
the	 insights	 and	 the	 knowledge	 from	 the	 data	 streams	 generated	 by	 various	 sensors	 and	 other	
monitoring	components	embedded	in	the	physical	systems;	(ii)	it	supports	informed	decision	making;	
(iii)	 it	 enables	 feedback	 from	 the	 physical	 processes	 to	 the	 cyber	 counterparts;	 (iv)	 it	 eventually	
facilitates	 the	 integration	 of	 cyber	 and	 physical	 systems.	 There	 have	 been	 many	 successful	
applications	 of	 data	 streams	 analytics,	 powered	 by	machine	 learning	 techniques,	 to	 CPS	 systems.	
Thus,	 it	 is	necessary	 to	have	a	 survey	on	 the	particularities	of	 the	application	of	machine	 learning	
techniques	to	the	CPS	domain.	 In	particular,	we	explore	how	machine	 learning	methods	should	be	
deployed	and	integrated	in	cloud	and	fog	architectures	for	better	fulfilment	of	the	requirements,	e.g.	
mission	 criticality	 and	 time	 criticality,	 arising	 in	 CPS	 domains.	 To	 the	 best	 of	 our	 knowledge,	 this	
paper	is	the	first	to	systematically	study	machine	learning	techniques	for	CPS	data	stream	analytics	
from	various	perspectives,	especially	from	a	perspective	that	leads	to	the	discussion	and	guidance	of	
how	the	CPS	machine	learning	methods	should	be	deployed	in	a	cloud	and	fog	architecture.		

Keywords:	Cyber-physical	systems	(CPS),	Machine	learning,	Cloud	computing,	Fog	computing,	Edge	
computing,	Analytics	

I. Introduction	and	Motivation	

1. Cyber	 physical	 systems:	
Definitions	and	characteristics	

Recent	 advances	 in	 computing,	 communication		
and	 sensing	 technologies	 have	 given	 rise	 to	
Cyber-Physical	 Systems	 (CPS),	 not	 only	 one	 of	
the	 most	 prominent	 ICT	 technologies	 that	
pervade	 various	 sectors	 of	 the	 physical	 world,	
but	 also	 an	 integral	 part	 of	 everyday	 life	

[1][2][3][4].	 The	 	 term	 	 cyber-physical	 	 systems		
(CPS)		was		coined		in		the		US		in		2006	[5],		with		
the	 realisation	 of	 the	 increasing	 importance	 of	
the	 interactions	 between	 interconnected	
computing	systems	[6].		There	have	been	various	
definitions	of	CPS,	each	of	 them	throwing	 some	
light	at	some	of	the	relevant	factors	that	revolve	
around	CPS	systems.	Next,	we	will	discuss	some	
of	 the	 most	 relevant	 in	 order	 to	 provide	 the	
readers	with	an	educated	vision	on	what	cyber-
physical	systems	are:	

• The	National	Science	Foundation	 [7]	defines	
CPS	 as	 “Cyber-physical	 systems	 (CPS)	 are	
engineered	systems	that	are	built	 from,	and	
depend	 upon,	 the	 seamless	 integration	 of	
computational	 algorithms	 and	 physical	
components.	 Advances	 in	 CPS	 will	 enable	
capability,	adaptability,	scalability,	resiliency,	
safety,	 security,	 and	 usability	 that	 will	 far	
exceed	 the	 simple	 embedded	 systems	 of	
today.	 CPS	 technology	 will	 transform	 the	
way	 people	 interact	 with	 engineered	
systems	 --	 just	 as	 the	 Internet	 has	
transformed	 the	 way	 people	 interact	 with	
information.	 New	 smart	 CPS	 will	 drive	
innovation	 and	 competition	 in	 sectors	 such	
as	 agriculture,	 energy,	 transportation,	
building	design	 and	automation,	 healthcare,	
and	manufacturing.”	

• Lee	 [1]	 defines	 CPS	 as	 “A	 cyber-physical	
system	 (CPS)	 is	 an	 orchestration	 of	
computers	 and	physical	 systems.	 Embedded	
computers	 monitor	 and	 control	 physical	
processes,	 usually	 with	 feedback	 loops,	
where	 physical	 processes	 affect	
computations	and	vice	versa.”		

• The	 National	 Institute	 of	 Standards	 and	
Technology	[4]	defines	the	subject	of	CPS	as	
“Systems	that	integrate	the	cyber	world	with	
the	 physical	 world	 are	 often	 referred	 to	 as	
cyber-physical	 systems	 (CPS).	 The	
computational	 and	 physical	 components	 of	
such	systems	are	 tightly	 interconnected	and	
coordinated	 to	 work	 effectively	 together,	
sometimes	with	humans	in	the	loop”		

Despite	their	differences	in	length,	detail	and	the	
semantics	 of	 some	 terms,	 there	 are	 some	
common	 characteristics	 that	 can	 be	 extracted	
from	 these	 definitions.	 More	 specifically,	 we	
argue	 that	 cyber-physical	 systems	 have	 the	
following	inherent	characteristics:		

• Integration	of	cyber	elements	(computation,	
software	 and	 networking),	 engineered	
elements	 (physical	 processes)	
[1][7][8][9][10][11],	and	human	factors	[4]	

• Reciprocal	 feedback	 loops	 between	 physical	
processes	and	computations,	(simulation	and	
decision	 making),	 	 sensing	 and	 actuation	
elements,	 and	 monitoring	 and	 control	
elements	[4][1][8][9][12]	

• It	 also	 encompasses	 a	 new	 generation	 of	
embedded	 control	 systems	 (i.e.	 networked	
embedded	systems)	consisting	of	networked	
CPS	 components	 and	 tightly	 coupled	 and	
interconnected	cyber-physical	processes	that	
require	 of	 cooperation	 and	 coordination.	
[2][4][13]	

In	 	 addition	 to	 this,	 the	 National	 Institute	 of	
Standards	 and	 Technology	 also	 highlights	 the	
fact	 that	 CPS	 require	 of	 the	 integration	 and	
cooperation	 of	 two	 technologies	 for	 the	
successful	 deployment	 of	 these	 systems	 [4].	
Firstly	 learning	 and	 predictive	 capabilities	 are	
necessary	 to	 provide	 the	 integration	 of	 physical	
and	 digital	 models	 and,	 more	 importantly,	
provide	the	ability	for	the	digital	world	to	change	
its	 autonomous	 logic	 based	 on	 the	 state	 of	 the	
physical	world	(e.g.,	diagnostics	and	prognostics).	
Secondly,	 it	 is	 stated	 that	 CPS	 require	 of	 open	
architectures	 and	 standards	 that	 provide	 for	
modularity	 and	 composability	 of	 systems,	 thus	
allowing	complex	and	dynamic	applications.	

Particularly,	 CPS	 is	 an	 interconnected	 twin	
cybernetics	 digital	 system	 (virtual	 and	 physical	
worlds).	 The	 desired	 predictive	 capabilities	 in	
CPS	 are	 the	 ones	 that	 require	 these	 systems	 to	
potentially	 collect	 and	 analyse	 data	 from	 the	
physical	 and	 digital	 world.	 In	 the	 end,	 the	
predictive	 capability	 informs	decision	makers	 to	
take	appropriate	actions	or	control	to	change	the	
course	of	physical	world.				

Finally	 it	 should	 be	 highlighted	 that	 current	
applications	of	CPS	 include	automotive	systems,	
manufacturing,	medical	devices,	military	systems,	
assisted	living,	traffic	control	and	safety,	process	
control,	 power	 generation	 and	 distribution,	
energy	 conservation,	 HVAC	 (heating,	 ventilation	
and	 air	 conditioning),	 aircraft,	 instrumentation,	
water	 management	 systems,	 trains,	 physical	

security	 (access	 control	 and	 monitoring),	 asset	
management	 and	 distributed	 robotics	
(telepresence,	telemedicine)	[1].	

2. Data	Stream	Analytics	in	CPS	
Mining	 data	 streams,	 acquired	 from	 various	
sensors	 and	 other	 monitoring	 components	
embedded	 in	 the	 physical	 systems,	 plays	 an	
essentially	 role	 in	CPS,	as	 it	extracts	 the	 insights	
and	 the	 knowledge	 from	 the	 data	 streams,	
provides	 learning	 and	 predictive	 capabilities	 for	
decision	 support	 and	 autonomous	 behaviour,	
enables	 the	 feedback	 from	 the	 physical	
processes	 to	 the	 cyber	 counterparts,	 and	
eventually	facilitates	the	integration	of	cyber	and	
physical	systems		[14].		

Silva	et	al.	 [15]	provides	a	 formal	definition	of	a	
data	stream	as:	

A	data	stream	S	is	a	massive	sequence	of	
data	 objects	 𝑋" ,	 𝑋# …,	 𝑋$,	 i.e.,	 𝑆 =
{𝑋(}(*"$,	which	 is	potentially	unbounded	
(𝑁 → ∞).	 Each	 data	 object	 is	 described	
by	 an	 n-dimensional	 attribute	 vector	
𝑋(= [𝑥0

(]0*"
2 	belonging	 to	 an	 attribute	

space	 Ω	 that	 can	 be	 continuous,	
categorical,	or	mixed.	

Data	 streams	 feature	 massive,	 potentially	
unbounded	 sequences	 of	 data	 objects	 that	 are	
continuously	 generated	 at	 rapid	 rates	 	 [15],	
which	leads	to	the	fundamental	shift	in	the	data	
analytics	 (information	source)	 from	traditional	a	
priori	 information	 alone	 based	 or	 off-line	 batch	
approaches,	 to	 stream	 analytics.	 The	 key	
challenge	in	stream	analytics	is	the	extraction	of	
valuable	knowledge	in	real	time	from	a	massive,	
continuous	 and	 dynamic	 data	 stream	 in	 only	 a	
single	 scan	 [16].	 	The	 reader	 should	additionally	
consider	 that	 the	 insights	 extracted	 from	
physical	 devices,	 such	 as	 sensors,	 feature	
perishable	insights,	i.e.,	they	have	to	be	provided	
quickly,	as	otherwise	they	lose	value	to	feed	the	
logic	of	the	CPS	software.	In	a	CPS,	data	streams	
are	 most	 beneficial	 at	 the	 time	 they	 are	
produced,	 as	 any	 change	 reported	 by	 the	 data	

(e.g.	 a	 sensor	 anomaly,	 a	 fault	 in	 the	 physical	
process	 being	 sensed,	 or	 a	 change	 of	 system	
state)	 should	 be	 detected	 as	 soon	 as	 possible,	
and	be	acted	upon,	for	example,	via	a	change	in	
control	policy	or	an	output	action.	Furthermore,	
as	 opposed	 to	 stream	 analytics	 for	 purely	
software	systems,	the	insights	being	revealed	by	
data	 streams	 in	 CPS	 are	 often	 tied	 to	 a	 safety-
critical	action	that	must	be	performed	to	ensure	
the	health	of	the	CPS	itself	[14].		

Analysis	 of	 these	 ever-growing	 data	 streams	
becomes	 a	 challenging	 task	 with	 traditional	
analytical	tools.	Innovative	and	effective	analytic	
techniques	 and	 technologies	 are	 required	 to	
operate,	 continuously	 and	 in	 real-time,	 on	 the	
data	 streams	 and	 other	 sources	 data	 [17].	
Machine	 learning	 is	 a	 discipline	 that	 aims	 to	
enable	 computers	 to,	 without	 being	 explicitly	
programmed,	 automate	 data-driven	 model	
building	 and	 hidden	 insights	 discovery,	 i.e.,	 to	
automate	 behaviour	 or	 the	 logic	 for	 the	
resolution	 of	 a	 particular	 problem,	 via	 iterative	
learning	 from	 example	 data	 or	 past	 experience	
[18][19][20].	 	 In	 the	 past,	 there	 have	 existed	
many	successful	applications	of	machine	learning,	
including	systems	that	analyse	past	sales	data	to	
predict	 customer	 behaviour,	 optimize	 robot	
behaviour	so	that	a	task	can	be	completed	using	
minimum	resources,	and	extract	knowledge	from	
bioinformatics	data[20].	In	this	particular	survey,	
we	will	focus	on		

3. Cloud	and	Fog	Computing	
The	 interconnection	 of	 sensor	 and	 actuator	

systems	with	decision	making	and	analytics	have	
traditionally	 been	 performed	 by	 either	 local	
static	 controllers	 or	 uploaded	 to	 the	 Cloud	 for	
analysis.	Supported	by	the	paradigms	of	Internet	
of	Things	(IoT),	Cloud	computing	experts	propose	
the	 virtualization	 of	 devices	 to	 provide	 their	
data-based	capabilities	and	their	connection	as	a	
service	 for	users	within	a	Sensing	and	Actuation	
as	a	Service	(SAaaS)	[21]	or	as	Things	as	a	Service	
(TaaS)	 [22].	 Another	 role	 that	 Cloud	 computing	
has	 played	 in	 supporting	 CPS	 is	 focused	 on	 the	

analysis	 of	 the	 data	 received	 from	 devices.	 The	
Cloud	 can	 provide	 a	 vast	 amount	 of	 processing	
and	 storage	 resources	 which	 can	 be	 used	 to	
analyse	 large	 amounts	 of	 data	 [23]	 or	 streams	
[24].	 These	 cloud	 capabilities	 are	 focused	 in	
centralized	 and	 remote	 datacenters,	 which	 has	
several	drawbacks.	The	security	aspect	of	storing,	
analysing	 and	managing	 data	 in	 the	 Cloud	 is	 an	
increasing	concern	[25],	while	the	remote	nature	
of	the	Cloud	also	has	reliability	and	latency	issues	
[26].	

The	paradigm	of	Fog	computing	as	proposed	
by	 [27]	 extends	 the	 Cloud	 to	 the	 edge	 of	 the	
network	 to	 better	 utilize	 resources	 available	 on	
gateways	and	connected	devices.	This	extension	
allows	data	to	be	stored	and	processed	locally	to	
increase	reliability	and	security,	while	decreasing	
the	 latencies	 between	 devices	 and	 the	
processing	 elements	 [28].	 Fog	 computing	
systems	 are	 typically	 characterized	 by	 a	 large	
number	 of	 heterogeneous	 nodes,	 increased	
mobility	and	a	strong	presence	of	streaming	and	
real-time	 applications	 [27].	 The	 hosts	 or	
gateways	 used	 in	 fog	 systems	 vary	 from	 PC	
based	Computing	Nodes	[29],	Mobile	Devices	[30]	
and	 resource	 constrained	 System	 on	 Chip	
Devices	 (SoC)	 [31],	 routers,	 switches,	 set	 top	
boxes,	 proxy	 servers	 and	 base	 stations	 [32].	
These	hosts	all	have	varying	 storage,	processing	
and	 networking	 capabilities.	 While	 computing	
nodes	 have	 the	 most	 resources	 and	 are	 most	
reliable,	 they	usually	 communicate	with	devices	
using	 Ethernet	 or	 Wi-Fi	 based	 networks.	 The	
mobile	 devices	 and	 SoC	 based	 devices	 have	
fewer	 resources	 but	 provide	 a	 wider	 range	 of	
wireless	communication	possibilities	for	polyglot	
gateways	[33],	 that	can	be	used	to	connect	to	a	
wider	range	of	heterogeneous	devices	using	low-
power	 Machine	 to	 Machine	 (M2M)	
communication	 protocols.	 These	 distinguishing	
properties	of	 the	Fog	are	essential	 for	providing	
elastic	resources	and	services	to	end	users	at	the	
edge	of	networks	[28].		Fog	computing	is	rapidly	
finding	its	way	into	CPS	and	IoT.		

Adopting	IoT	paradigms	into	CPS	can	provide	
several	 types	 of	 services,	 such	 as	 weather	
monitoring,	 smart	 grid,	 sensor	 and	 actuator	
network	 in	 manufacturing	 environment,	 smart	
building	 control	 and	 intelligent	 transport.	 These	
services	 produce	 a	 large	 amount	 of	 data	 that	
need	 to	 be	 processed	 for	 the	 extraction	 of	
knowledge	and	system	control	[34].	

The	 platforms	 deployed	 in	 Fog	 computing	
vary	 based	 on	 hosts	 and	 application	 domains,	
but	they	can	be	categorized	in	a	similar	way	as	in	
Cloud	computing.	Infrastructure	based	platforms	
allow	 users	 to	 deploy	 Virtual	 Machines	 (VM’s)	
[35]	 or	 lightweight	 virtualization	 images	 [36].	
Platform	 based	 solutions	 as	 in	 [37]	 provide	 a	
platform	 for	 users	 for	 application	 style	 system	
deployments.	 The	 third	 type	 of	 the	 platforms	
provides	 networking	 and	 analytics	 capabilities	
that	the	user	can	only	configure	and	use	without	
the	 need	 to	 program	 and	 deploy	 their	 own	
applications.	

From	 the	 hosts’	 perspective	 there	 are	 a	
number	 of	 differences	 between	 the	 Cloud	 and	
the	Fog.	The	main	difference	 is	 the	resources	of	
these	 hosts,	 while	 the	 Cloud	 is	 considered	 to	
have	a	virtually	unlimited	amount	of	storage	and	
processing	 capabilities,	 in	 the	 Fog	 these	
resources	 are	 a	 lot	 more	 restricted	 so	 their	
optimal	management	is	crucial.	When	we	look	at	
inter-host	 communication	 in	 the	 Cloud,	 due	 to	
high	 speed	 networks	 these	 delays	 are	 uniform	
and	 negligible.	 In	 the	 Fog,	 due	 to	 wireless	
communication	and	varying	network	types	these	
delays	 can	vary	 largely	between	hosts	 and	 their	
value	also	increases	dramatically.	When	we	look	
at	 device	 to	 host	 communication	 the	 Fog	 is	
closer	 to	 these	 devices	 while	 the	 Cloud	 adds	
significant	 networking	 delays	 when	 accessing	
remote	devices.	When	we	look	at	the	differences	
from	 a	 platform’s	 perspective	 we	 can	 see	 that	
Cloud	 solutions	 offer	 full	 control	 of	 resources	
using	 VM’s,	 Docker	 style	 solutions	 or	 other	
Platform	 as	 a	 Service	 (PaaS)	 options	 while	 Fog	
solutions	 tend	 to	 share	 more	 interdependent	

and	 constraint	 resources	 between	 users.	 Cloud	
computing	 has	 well	 established	 business	 model	
as	 compared	 to	 relatively	 new	 concept	 of	 Fog	
computing.	 However,	 this	 fact	 has	 been	
recognised	 by	 researchers	 and	 efforts	 can	 be	
seen	 in	 literature	 resolving	 billing,	 accounting,	
monitoring	and	pricing	for	a	Fog	business	model	
[38].	

CPS	requires	large	computational	capabilities	
to	 process,	 analyse,	 and	 simulate	 the	 collected	
data	 from	 sensors	 to	 make	 decisions	 and	 to	
instruct	controllers,	in	a	limited	time,	to	operate	
the	physical	devices.		The	volume	and	velocity	of	
sensor	and	visualization	data	in	CPS	require	large	
storages	 to	 accommodate	 and	 software	
applications	to	process	them.	The	division	of	the	
labour	 of	 latency	 tolerant	 and	 deep	 analytics	
tasks	 between	 Fog	 and	 Cloud	 depends	 upon	
processing	 power	 of	 the	 edge	 nodes	 and	
application’s	 domain.	 The	 edge	 nodes	 with	
limited	computational	power	may	only	 focus	on	
performance	 of	 latency	 sensitive	 tasks.	 On	 the	
other	 hand,	 machine	 learning	 algorithms	 that	
require	intensive	computing	resources	should	be	
executed	 in	 the	Cloud.	 The	 cloud	 service	model	
with	elastic	and	flexible	architecture	presents	an	
appropriate	 solution	 to	 support	 the	 emerging	
CPS.	 However,	 the	 study	 on	 how	 data	 and	
applications	should	be	distributed	between	edge	
devices	and	the	cloud	has	derived	little	attention	
from	 the	 academic	 and	 industry	 research	
communities.	 This	 obviously	 includes	 the	
decision	on	where	machine	learning	methods	for	
stream	analytics	should	be	executed:	the	edge	or	
the	 cloud.	 The	 existing	 machine	 learning	
methods	 with	 different	 processing	 properties	
have	 their	 own	 strengths	 and	 weakness,	 so	
several	 methods	 or	 their	 variants	 have	 been	
proposed	 to	 address	diverse	 requirements	 from	
different	 applications.	 Some	 methods,	 for	
example,	 may	 cope	 better	 than	 others	 in	
incomplete	 data	 sets	 or	 large	 data	 sets,	 while	
some	 may	 require	 more	 computational	 power	
than	others.				

Given	the	emerging	and	promising	Cloud	and	
Fog	computing	architecture	and	the	foreseeable	
integration	of	CPS,	more	specifically	the	machine	
learning	based	data	analytics	 in	CPS,	 to	 such	an	
architecture,	 it	 is	 necessary	 to	 investigate	 what	
machine	 learning	 techniques	 have	 been	
employed	 in	 the	 context	 of	 CPS,	 and	 further,	
how	they	should	be	adapted	and	deployed	in	the	
cloud-fog-edge	architecture	for	better	fulfilment	
of	 the	 requirements	 of	 the	 application,	 such	 as	
mission	 criticality	 and	 time	 criticality.	 This	
research	 aims	 to	 identify	 and	 analyse	 the	
properties	 of	 current	 well-known	 machine	
learning	 methods	 employed	 in	 the	 context	 of	
CPS	and	the	characteristics	of	stream	data	in	CPS	
to	 provide	 a	 comprehensive	 study	 on	 their	
relation.	 This	 will	 help	 determine	 how	 to	 map	
data	and	machine	learning	methods	to	the	Cloud	
and	 Edge	 computing	 to	 meet	 the	 CPS	
requirements.	More	specifically,	we	will	focus	on	
the	 analysis	 of	 the	 machine	 learning	 models	
employed	 in	 stream	 analytics	 from	 the	
perspective	of	the	time	complexity.	This	measure	
will	 provide	 important	 indications	 to	 the	
appropriateness	of	Edge	computing	to	host	tasks,	
as	it	has	limited	computational	powers,	RAM	and	
storage	whereas	the	cloud	has	more	flexibilities,	
capacities	and	capabilities	to	deal	with	resource-
intensive	 tasks	 on	 demand.	 The	 required	
qualities	for	the	outputs	and	the	types	of	results	
(e.g.	 precision	 and	 accurate	 rates)	 have	
significant	 influence	 on	 the	 resources	 and	
response	 time	 of	 the	 selected	 methods,	 so	 the	
correlation	among	them	should	be	investigated.	

To	 the	 best	 of	 our	 knowledge,	 this	 paper	 is	
the	 first	 to	 systematically	 study	 the	 machine	
learning	 based	 data	 stream	 analysis	 in	 CPS	 and	
how	 they	 should	 be	 deployed	 in	 the	 emerging	
cloud-fog-edge	architecture.		

The	 remainder	 of	 the	 paper	 is	 organized	 as	
follows.	We	present	the	related	work	in	section	2.	
In	 section	 3,	 the	machine	 learning	methods	 are	
reviewed	 from	 the	 perspective	 of	 the	 functions	
they	 provided	 for	 the	 typical	 CPS	 applications.	

Then,	 the	 time	 complexities	of	 general	machine	
learning	 techniques	 are	 provided	 in	 section	 4,	
based	 on	 which	 discussions	 on	 how	 these	
machine	 learning	 methods	 should	 be	 deployed	
are	 given	 for	 the	 purpose	 of	 effective	 and	
efficient	 integration	 to	 the	 Cloud	 and	 Fog	
computing	architecture.	We	conclude	 the	paper	
with	some	future	research	directions.		

II. 	 Related	work	
Traditional	 CPSs	 may	 have	 limited	 computation	
and	 storage	 capabilities	 due	 to	 the	 tiny	 size	 of	
the	 devices	 embedded	 into	 the	 systems.	 Chaâri	
et	al.	[2]	investigated	the	integration	of	CPSs	into	
the	cloud	computing,	and	presented	an	overview	
of	 research	 efforts	 on	 the	 integration	 of	 cyber-
physical	 systems	with	 cloud	 computing	 in	 three	
areas:	 (1)	 remote	 brain,	 (2)	 big	 data	
manipulation,	 (3)	 and	 virtualization.	 More	
specifically,	 real-time	 processing,	 enabled	 by	
offloading	 computation	 and	 big	 data	 processing	
on	 the	 cloud	 systems	 were	 explored.	
Nevertheless,	Chaâri	et	al.	[2]	did	not	include	an	
exhaustive	analysis	of	the	emerging	fog	and	edge	
computing	 technologies,	 and	 how	 these	
technologies	should	cooperate	with	CPS.		

The	authors	 in	 [16]	and	 [15]	presented	a	survey	
on	data	stream	analytics	from	the	perspective	of	
clustering	 algorithms.	 Apart	 of	 summarizing	 the	
unique	characteristics	of	data	stream	processing	
by	 comparison	with	 traditional	 data	 processing,		
in	 [16],	 data	 stream	 clustering	 algorithms	 were	
categorized	 into	 five	 methods	 (i.e.,	 hierarchical	
methods,	 partitioning	 methods,	 grid-based	
methods,	 density-based	 methods,	 and	 model-
based	 methods).	 Similarity,	 [15]	 analysed	 13	
most	relevant	clustering	algorithms	employed	in	
the	context	of	data	stream	analytics.	 In	addition	
to	 the	 categories	 listed	 in	 [15],	 the	 authors	 in		
[16]	 identified	 three	 commonly-studied	window	
models	 in	 data	 streams,	 i.e.,	 sliding	 windows,	
damped	 windows,	 and	 landmark	 windows.	
Differently	 to	 [15]	 and	 [16],	 we	 do	 not	 solely	
focus	 on	 clustering	 algorithms,	 but	 we	 also	

extend	 analytics	 to	 other	 types	 of	 machine	
learning	algorithms.			

In	 [20],	 the	 authors	 studied	 machine	 learning	
techniques	employed	 in	 transportation	 systems,	
and	 identified	 various	 conventional	 machine	
learning	 methods	 such	 as	 regression	 (linear	
regression,	 polynomial	 regression	 and	
multivariate	 regression),	 decision	 tree,	 artificial	
neural	 networks	 (ANNs),	 support	 vector	
machines	 (SVMs)	 and	 clustering.	 Despite	 the	
useful	insights	provided	by	the	work,	the	analysis	
is	 exclusively	 carried	 out	 in	 the	 light	 of	 a	 very	
particular	 type	 of	 CPS	 application;	 and	 further,	
no	 advanced	 machine	 learning	 methods,	 e.g.	
deep	learning	methods,	was	introduced.	

The	 survey	 provided	 in	 [39]	 recognized	 the	
changes	 that	 were	 needed	 to	 move	 from	 a	
conventional	technology-driven	transport	system		
into	a	more	powerful	multifunctional	data-driven	
intelligent	 transportation	 system	 (D2ITS),	 i.e.	 a	
system	 that	 employed	 machine	 learning	 and	
other	 intelligent	 methods	 to	 optimize	 its	
performance	 to	 provide	 a	 more	 privacy-aware	
and	people-centric	 intelligent	system.	The	paper	
identified	 both	 the	 data	 sources	 that	 drove	
intelligent	 transport	 systems	 (ITS),	 (e.g.	 GPS,	
Laser	 radar,	 seismic	 sensor,	 	 ultrasonic	 sensor,	
meteorological	 sensor,	 etc.),	 and	 the	 learning	
mechanisms	 for	 real-time	 traffic	 control	 and	
transportation	 system	 analysis,	 such	 as	 online	
learning	 (e.g.,	 state-space	 neural	 network,	 real-
time	Kalman	filter,	combination	of	online	nearest	
neighbour	 and	 fuzzy	 inference,	 hidden	 Markov	
model,	 etc.),	 adaptive	 dynamic	 programming	
(ADP),	 reinforcement	 learning	 (RL)	 and	 ITS-
Oriented	Learning.	The	article	offers	a	 thorough	
and	 sound	 view	 on	 transport	 systems,	 but	 the	
insights	 are	 not	 extrapolated	 to	 other	 CPS	
domains	and	applications.		

The	 authors	 in	 [40]	 presented	 an	 analysis	 on	 a	
number	 of	 existing	 data	 mining	 and	 predictive	
machine	 learning	methods	for	big	data	analytics	
with	the	goal	of	optimising	the	dynamic	electrical	
market	 and	 consumers'	 expectations	 in	 the	

smart	grid.	Similarity,	authors	 in	 [41]	review	the	
benefits	and	gaps	of	the	combination	of	artificial	
neural	 networks,	 genetic	 algorithms,	 support	
vector	 machines	 and	 fuzzy	 logic	 for	 the	
forecasting	of	power	grid.	Another	similar	review	
is	 carried	 out	 in	 [42]	 to	 analyse	 the	 big	 data	
methods	 used	 to	 manage	 the	 smart	 grid.	 The	
authors	 identified	different	predictive	 tasks	 that	
can	be	carried	out	in	the	smart	grid	domain	such	
as	 power	 generation	 management,	 power	
forecasting,	 load	 forecasting,	 operation	 and	
control	fault	diagnosis,	and	so	forth.	The	authors	
mapped	 to	 the	 corresponding	 statistical	 or	
machine	 learning	 methods	 with	 the	 required	
data	inputs	or	sources.	

III. Machine	 Learning	 Methods	
in	CPS	Applications	

1. Typical	CPS	Applications	
Smart	Grid:	

Smart	 grid	 is	 a	 complex	 system	 ranging	 from	
micro	grid	 to	national	or	 international	networks	
involving	 different	 levels	 of	 facilities,	
managements	 and	 technologies.	 A	 smart	 grid	 is	
considered	 as	 a	 cyber	 physical	 system	 as	 it	
monitors	 and	 manages	 the	 power	 generation,	
loading,	and	consumptions	through	a	number	of	
sensors.	 These	 sensors	 gather	 the	 stream	 data	
that	 is	 fed	 to	 analytic	 methods	 and	 control	
systems	 to	 balance	 and	 distribute	 power	
generation	and	consumption	[43].		

Due	 to	 complexity	 and	 dynamics	 of	 power	
market,	 and	 the	 nature	 volatile	 nature	 of	
renewable	energy,	it	is	important	to	have	a	good	
forecasting	 and	 prediction	 on	 the	market	 trend	
and	energy	production	to	correctly	estimate	the	
amount	of	power	to	generate.	In	addition	to	this	
purpose,	 applications	 of	 analytics	 to	 the	 smart	
grid	also	include	fault	detection	in	infrastructure,		
devices,	 system	 and	 application	 levels	 [10].	
Machine	 learning	 is	 a	 promising	 tool	 to	 analyse	
the	 data	 stream	 and	 convert	 them	 to	 informed	
decisions	and	actions.			

Intelligent	Transportation	Systems	(ITS)	

An	 intelligent	 transportation	 system	 (ITS)	 is	 an	
advanced	 application	 which	 aims	 to	 provide	
innovative	 services	 relating	 to	 transport	 and	
traffic	 management,	 and	 enable	 users	 to	 be	
better	 informed	 and	 make	 safer,	 more	
coordinated,	 and	 smarter	 use	 of	 transport	
networks.	 	 ITS	brings	significant	 improvement	 in	
transportation	 system	 performance,	 including	
reduced	 congestion	 and	 increased	 safety	 and	
traveller	convenience	[44][45][46].		

ITS	 is	 a	 typical	 CPS	 as	 it	 meets	 the	 core	
characteristics	 of	 CPS.	 Enabled	 by	 Information	
and	 Communication	 Technologies	 (ICT),	
elements	 within	 the	 transportation	 system	 -	
vehicles,	 roads,	 traffic	 lights,	message	signs,	etc.	
-	 are	 becoming	 intelligent	 by	 embedding	
microchips	 and	 sensors	 in	 them.	 In	 return,	 this	
allows	communications	with	other	agents	of	the	
transportation	 network,	 and	 the	 application	 of	
advanced	 data	 analysis	 and	 recognition	
techniques	 (e.g.,	 machine	 learning	 techniques)	
to	 the	 data	 acquired	 from	 embedded	 sensors	
such	 as	 inductive-loop	 detectors,	 Global	
Positioning	 System	 (GPS)-based	 receivers,	
microwave	 detectors,	 and	 so	 forth.	 As	 a	 result,	
intelligent	 transportation	 	 systems	 	 empower		
actors	 	 in	 	 the	 	 transportation	 system—from	
commuters,	 to	 highway	 and	 transit	 network	
operators,	 to	 the	 actual	 devices,	 such	 as	 traffic	
lights,	 themselves—with	 actionable	 information	
(that	is,		intelligence)		to		make		better-informed		
decisions,	 e.g.	 whether	 	 it’s	 	 choosing	 	 which		
route	 	 to	 	 take;	 	 when	 	 to	 travel;	 whether	 to	
mode-shift	(take	mass	transit	instead	of	driving);	
how	 to	 optimize	 traffic	 signals;	 where	 to	 build	
new	 roadways;	 or	 how	 to	 hold	 providers	 of	
transportation	 services	 accountable	 for	 results	
[39][46].	

Smart	Manufacturing/Industrial	4.0:		

Manufacturing	 applications,	 such	 as	 object	
detection,	 force	 and	 torque	 sensor	 based	
assembly	operations,	 require	 accuracy	of	 object	
detection,	 pose	 estimation	 and	 assembly	 to	
within	few	micrometres.	Moreover,	this	accuracy	

has	to	pass	the	test	of	time	and	repeatability	(i.e.,	
the	results	should	be	precise).	

Manufacturing	 in	 general	 and	 automotive	
manufacturing	 in	 particular,	 requires	 operation	
involving	handling,	 inspection	or	assembly	to	be	
completed	 in	 few	 seconds.	 For	 example,	 BMWs	
mini	 plant	 in	 Oxford	 has	 a	 car	 coming	 of	
production	 line	 every	 68	 seconds	 [47].	
Applications,	 such	 as	welding,	 require	 real	 time	
data	 processing,	 analysis	 and	 results.	 For	
example,	 to	 track	 the	 position	 of	 joining	 plates	
on	 real	 time	 basis	 and	 adjust	 the	movement	 of	
weld	 guns	 on	 real	 time	 basis	 for	 precise	 and	
accurate	welding	at	high	speed	[48].			

2. Machine	Learning	in	a	Nutshell	
Machine	 learning	 is	 the	 discipline	 that	 aims	 to	
make	 computers	 and	 software	 learn	 how	 to	
program	itself	and	improve	with	experience/data,	
with	the	goal	of	solving	particular	problems	[49].	
Typically,	 a	 machine	 learning	 algorithm	 is	 a	
specific	 recipe	 that	 tells	 a	 computer/software	
how	to	 improve	 itself	 from	experience.	A	model	
is	 the	 result	 of	 training	 a	 machine	 learning	
algorithm	with	a	set	of	data	or	experiences	of	a	
given	problem,	and	 it	 can	be	employed	 to	solve	
future	related	problems.	

The	 problems	 faced	 by	 machine	 learning	
algorithms	 fall	 into	 one	 of	 the	 following	
categories	 according	 to	 the	 nature	 of	 the	 data	
that	 is	 employed	 to	 improve	 the	 learning:	
supervised	 learning,	 unsupervised	 learning,	 and	
reinforcement	 learning.	Next,	we	 briefly	 discuss	
each	 of	 these	 categories	 and	 describe	 some	 of	
the	most	relevant	techniques	for	each	category:	

• In	 supervised	 learning,	 the	 aim	 is	 learning	 a	
mapping	 from	 an	 input	 to	 an	 expected	
output	 that	 is	 provided	 by	 a	 supervisor	 or	
oracle	(i.e.,	labelled	data)	[18].	Depending	on	
the	 type	 of	 output,	 we	 say	 that	 we	 either	
have	a	classification	or	a	regression	problem.	
In	 the	 first	 case,	 we	 aim	 to	 produce	 a	
discrete	 and	 finite	 number	 of	 possible	
outputs,	while	 in	 the	 second	case	 the	 range	

of	possible	outputs	are	 infinite	and	numeric	
[18].		

• In	 unsupervised	 learning,	 there	 is	 no	 such	
supervisor	and	only	the	input	data	is	present.	
The	 aim	 of	 these	 algorithms	 is	 finding		
regularities	in	the	input	[18][20].	

• Finally,	reinforcement	learning	applies	to	the	
cases	where	the	learner	is	a	decision-making	
agent	 that	 takes	 actions	 in	 an	 environment	
and	 receives	 reward	 (or	 penalty)	 for	 its	
actions	 in	 trying	 to	 solve	 a	 problem.	 Thus,	
the	 learning	process	 is	guided	by	a	series	of	
feedback/reward	 cycles	 [20].	 Here,	 the	
learning	 algorithm	 is	 not	 based	 on	 given	
examples	 of	 optimal	 outputs,	 in	 contrast	 to	
supervised	 learning,	 but	 instead	 it	 must	
discover	them	by	a	process	of	trial	and	error	
[50]	

Next,	 we	 describe	 some	 of	 the	 most	 usual	
machine	 learning	 algorithms	 employed	 in	 the	
context	of	CPS	data	stream	analytics.	

Decision	Trees	and	random	forests:		

A	decision	tree	 is	a	supervised	machine	 learning	
algorithm	 that	 is	 organized	 in	 a	 tree-like	
hierarchical	 structure	 composed	 by	 decision	
nodes	 and	 leaves.	 Leaves	 represent	 expected	
outputs,	 and	decision	nodes	branch	 the	path	 to	
one	 of	 the	 expected	 outputs	 according	 to	 the	
value	of	 a	 specific	 input	 attribute.	Decision	 tree	
algorithms	exist	 in	the	form	of	classification	and	
regression	 algorithms	 [18].	 One	 of	 the	 main	
advantages	of	decision	trees	is	that	the	model	is	
human	readable	and	understandable.	

A	random	forest	is	an	ensemble	of	random	trees	
constructed	by	means	of	bagging.	By	this	process,	
a	 training	dataset	of	N	samples	 is	divided	 into	k	
different	 datasets	 of	 N’	 samples	 uniformly	
sampled	 with	 replacement	 from	 the	 original	
dataset,	and	consisting	of	a	random	selection	of	
the	 input	 attributes.	 Then,	 each	 dataset	 is	
employed	 to	 train	 a	 different	 decision	 tree,	
guided	by	 the	heuristic	 that	 the	 combination	of	
the	 resulting	 models	 should	 be	more	 robust	 to	
overfitting.	 Each	 tree	 provides	 an	 output	 that	

can	 be	 aggregated	 by	 a	 wide	 variety	 of	 rules	
[51][52].	

Artificial	Neural	Networks	(ANNs)	and	variants:	

ANNs	 are	 machine	 learning	 algorithms	 that	
resemble	the	architecture	of	the	nervous	system,	
organized	 as	 interconnected	 networks	 of	
neurons	 organized	 in	 layers.	 These	 versatile	
algorithms	are	typically	employed	for	supervised,	
unsupervised,	 and	 reinforcement	 learning.	 The	
inputs	 of	 the	 network	 (input	 layer)	 are	
transformed	 by	 weighted	 (non)	 linear	
combinations	 that	 generate	 values	 that	 can	 be	
further	 transformed	 in	 other	 layers	 of	 the	
network	until	they	reach	the	output	layer.	Due	to	
their	 ability	 to	 represent	 potentially	 complex	
relationship	 between	 the	 inputs	 and	 the	
expected	 output,	 ANNs,	 such	 as	 the	 multilayer	
perceptron	 (MLP),	 have	 gained	 popularity	 in	
machine	 learning	 and	 data	 analytics	 realm.	 The	
multilayer	 perceptron	 is	 a	 nonparametric	
estimator	that	can	be	used	for	both	classification	
and	regression.	

Convolutional	 Neural	 Networks	 (CNNs)	 exploit	
translational	invariance	within	their	structures	by	
extracting	 features	 through	 receptive	 fields	 and	
learning	by	weight	sharing.		CNNs	usually	include	
two	 parts.	 The	 first	 part	 is	 a	 feature	 extractor,	
which	 learns	 features	 from	 raw	 data	
automatically	 and	 is	 composed	 of	 multiple	
similar	 stages	 and	 layers.	 The	 second	 part	 is	 a	
trainable	fully-connected	MLP	or	other	classifiers	
such	as	SVM,	which	performs	classification	based	
on	 the	 learned	 features	 from	 the	 previous	 part	
[53][54].	

Recurrent	 Neural	 Networks	 (RNNs)	 are	 a	 family	
of	neural	networks	that	has	gained	popularity	in	
the	 last	 few	 years	 [55],	 and	 they	 are	 of	 special	
relevance	 to	 stream	 analytics	 due	 to	 this	
characteristic.	 In	 addition	 to	 this,	 the	 surge	 of	
data	 and	 computing	 power	 present	 in	 the	 last	
decade	have	given	rise	to	deep	neural	networks	
[56]	 that	 stack	 multiple	 non-linear	 layers	 of	
neurons	 to	 represent	 more	 complex	
relationships	 between	 inputs	 and	 outputs	 or	

more	efficient	representations	of	the	inputs.	For	
various	 closely	 related	 definitions	 of	 deep	
learning,	please	refer	to	[56].	

Support	Vector	Machines	(SVMs):	

Support	 vector	machines	 (SVMs)	 are	 supervised	
learning	methods	 that	 classify	 data	 patterns	 by	
identifying	 a	 boundary	 or	 hyperplane	 with	
maximum	margin	 between	 data	 points	 of	 each	
class/category	 [20][51].	 The	 support	 vector	
machine	 is	 fundamentally	 a	 two-class	 classifier,	
although	multiclass	classifiers	can	be	built	up	by	
combining	multiple	 two-class	SVMs.	Despite	 the	
fact	 that	 they	 were	 initially	 devised	 for	
classification	 tasks,	 SVMs	 have	 been	 further	
extended	to	regression	problems	[57].	

Bayesian	networks	and	variants	

Bayesian	 networks	 are	 probabilistic	 graphical	
models	 based	 on	 directed	 acyclic	 graphs	where	
the	 nodes	 are	 random	 variables	 and	 the	 direct	
arcs	 indicate	 the	 direct	 influences,	 specified	 by	
the	 conditional	 probability,	 between	 two	
random	variables	[18][58].	

Some	popular	machine	 learning	algorithms	such	
as	 Naïve	 Bayes,	 a	 popular	 supervised	 classifier,	
and	 Hidden	 Markov	 models	 (HMMs)	 can	 be	
considered	as	special	cases	of	Bayesian	networks.	
The	 second	 specializes	 at	 processing	 sequences	
of	 outputs	 by	 learning	 implicit	 states	 that	
generate	 outputs	 	 [18]	 [50].	 This	 paradigm	 has	
been	used	for	both	supervised	and	unsupervised	
tasks.	

Evolutionary	computation:	

Evolutionary	 Computing	 is	 the	 collective	 name	
for	a	range	of	problem-solving	techniques	based	
on	the	principles	of	biological	evolution,	such	as	
natural	 selection	 and	 genetic	 inheritance.	 The	
fundamental	 metaphor	 of	 evolutionary	
computing	 relates	 this	 powerful	 natural	
evolution	to	a	particular	style	of	problem	solving	
–	 that	 is	 a	 pseudo	 trial-and-error	 guided	 by	 the	
value	 of	 a	 given	 fitness	 function	 that	 measures	
the	 goodness	 of	 the	 evolved	 individual/solution	
[59].	 Evolutionary	 computing	 techniques	mostly	

involve	 metaheuristic	 optimization	 algorithms,	
such	 as	 genetic	 algorithms	 and	 swarm	
intelligence.	 Genetic	 algorithms	 have	 been	
employed	 in	 supervised[60],	 unsupervised	 [61],	
and	reinforcement	learning	problems[62].	

Clustering:	

Clustering	 is	 an	 unsupervised	 family	 of	
algorithms	 that	 involve	 processing	 data	 and	
partitioning	 the	 samples	 into	 subsets	 known	 as	
clusters.	 The	 aim	 of	 this	 process	 is	 to	 classify	
similar	 objects	 into	 	 the	 	 same	 	 cluster	 	 while		
keeping	 dissimilar	 objects	 in	 different	 clusters		
[16].	The	separation	criteria	may	include	(among	
others)	 maximization	 of	 similarities	 inside	
clusters,	 minimization	 of	 similarities	 between	
different	 clusters,	 and	 minimization	 of	 the	
distance	 between	 cluster	 elements	 and	 cluster	
centres.	 One	 of	 the	 most	 popular	 clustering	
algorithms	 is	 called	k-means	 clustering	where	 k	
denotes	the	number	of	clusters.	

Self-organizing	map	(SOM):	

SOM	 is	 an	 automatic	 data-analysis	 method	
widely	 applied	 to	 clustering	 problems.	 SOM	

represents	 a	 distribution	 of	 input	 data	 items	
using	 a	 finite	 set	 of	 models.	 These	 models	 are	
automatically	 associated	 with	 the	 nodes	 of	 a	
regular	grid	in	an	orderly	fashion	such	that	more	
similar	models	become	automatically	associated	
with	nodes	that	are	adjacent	in	the	grid,	whereas	
less	 similar	 models	 are	 situated	 farther	 away	
from	each	other	 in	the	grid.	This	organization,	a	
kind	of	similarity	diagram	of	the	models,	makes	it	
possible	to	obtain	an	insight	into	the	topographic	
relationships	 of	 data,	 especially	 of	 high-
dimensional	data	items	[63].	

Q-learning:	

Q-learning	 is	 a	 kind	 of	 reinforcement	 learning	
technique	that	is	a	simple	way	for	agents	to	learn	
how	 to	 act	 optimally	 in	 controlled	 Markovian	
domains.	 It	 amounts	 to	 an	 incremental	method	
for	dynamic	programming	which	imposes	limited	
computational	demands.	It	works	by	successively	
improving	 its	 evaluations	 of	 the	 quality	 of	
particular	actions	at	particular	states	[64].	

3. Machine	Learning	Methods	in	CPS	
Table	1:	Overview	of	machine	learning	methods	in	the	context	of	CPS	

ML	Method	 Domain	 Functional	Category	 Task	 Reference	

ANN	 Smart	Grid	 Forecasting/Prediction/Regression	 Electrical	Power	prediction,		
load	forecasting	

[65][66][67][6
8][69][41]

Transport	 Pattern	Recognition/	Clustering		 Behaviour/Event	Recognition	 [51]	

Forecasting/Prediction/Regression	 traffic	flow	features	 [70]	
road-side	CO	and	NO2	
concentrations	estimation	

[71]	

travel	time	prediction	 [72][73][74]	
Classification	 obstacle	detection	and	

recognition	
[75]	

Image	Processing	 [76]	
Manufacturing	 Forecasting/Prediction/Regression/op

timization	
Energy	Consumption/	Process	
parameters	optimisation		

[77]	[78]	

Random	Forest	 Smart	Grid	 Forecasting/Prediction/Regression	 demand	side	load	
forecasting/Price	forecasting	

[65][79]	
	

Anomaly/Fault	Detection	 Power	record	faults	
	

[80]		

Transport	 Pattern	Recognition/Clustering	 Behaviour/Event	Recognition	 [51]	

Manufacturing	 Anomaly/Fault	Detection	 Tooling	wear/	Errors	detection	 [81]	[82]	[83]	

SVM	 Smart	Grid	 Forecasting/Prediction/Regression	 Price	Prediction	 [84][85]	
Electrical	Power	prediction,	 [86][67][69][8

7]	
Anomaly/Fault	Detection	 Non-Technical	Loss	detection	 [69][88][89]	

Blackout	Warning	 [86]	[90]	

Power	Line	Attacks	 [90]	
Transport	 Classification	 Unintentional	vehicle	lane	

departure	prediction	
[91]	

Obstacles	classification	 [92][75]	
Pattern	Recognition/	Clustering	 Behaviour/Event	Recognition	 [51][93]	
Anomaly/Fault	Detection	 Mechanism	Failure	 [94]	
Forecasting/Prediction/Regression	 Travel	time	prediction	 [95][74]	

Manufacturing	 Forecasting/Prediction/Regression	 Machine	Maintenance		 [96]	
Design	/	Configuration		 Feature	Design;	Production	

Processing		
[97][98]		

Anomaly/Fault	Detection	 Quality	Control	 [99][100]		
Smart	Home	 Pattern	Recognition/	Clustering	 Activity	recognition	 [101][102]	

Decision	tree		 Smart	Grid	 Anomaly/Fault	Detection		
	

fault	detection	
predict	an	energy	demand	

[103]	[104]	

Forecasting/Prediction/Regression	 [104]	
Transport	 Forecasting/Prediction/Regression	 To	predict	the		traffic	

congestion	level	and		pollution	
level;		bus	travel	time	

[105]	[106]	
[106]		

Anomaly/Fault	Detection		
	

Cyber	Attacks	/	detect	
stereotypical		motor		
movements			

[107]	

Manufacturing	 Classification/Diagnosis	 Quality	Control/Fault	diagnosis	 [108][109]		
Bayesian	Network	 Transport	 Classification	 Event	and	behaviour	detect	 [51]	

Smart	Grid	 Anomaly/Fault	Detection		
	

Non-technical	losses	and	fault	
detection	

[103]	

Manufacturing	 Anomaly/Fault	Detection		
	

Fault	detection	in	the	
production	line	

[110]	

Forecasting/Prediction/Regression	 Tool	wear	prediction/Energy	
consumption	prediction	

[111][112]	

Self-Organising	Map	 Transport	 Clustering	 Obstacle	detection	and	
recognition	

[75]	

Evolutionary	
Computing	

Smart	Grid	 Optimisation/	Forecasting/Prediction	 Short	Term	load	forecasting	 [113]	

Swarm	Computing	 Smart	Grid	 Optimisation	 economic	load	
dispatch/feature	Selection		

[114][115]	

Manufacturing	 Anomaly/Fault	Detection/Process		
optimisation	
	

Fault	detection,	classification	
and	location	for	long	
transmission	lines/Process	
optimization	
Automatic		fault	diagnosis		of	
bearings	

[116][117][11
8]		

	HMM	 Smart	Grid	 Optimisation	
Optimal	 decisions	 on	 smart	
home	usage	

[119]	

Manufacturing	 Anomaly/Fault	Detection		
Automatic	 	 fault	 diagnosis	 	 of	
bearings	

[117][120]		

Reinforcement	
learning	/Q-
learning-based	ADP	
algorithm		

Smart	Grid	 Optimisation	 Aided	Optimal	Customer	
Decisions	for	an	Interactive	
Smart	Grid	

[119]	

Transport	 Optimisation	 the	road	latent	cost	 [121]	

Deep	Learning/	
Autoencoder	
model/		
convolutional	
neural	network	
(CNN)/	Recurrent	
Neural	Networks	
(RNNs)	
	

Smart	Grid	 Forecasting/Prediction/classification/
Regression	
	

Building	Energy	consumption		 [122]	
Transport	
	

Traffic	flow	prediction;		
processing	roads	images	/	
commanding	Steering;		
detecting	train	door	anomaly	
and	predicting	breakdowns	
Anomaly-based	detection	of	
malicious	activity	

[123][124][12
5]	[126]	[94]	

Other	 To	classify	various	human	
activities;	To	detect	congestive	
heart	failure	

[54]		
Other	

	

	

	

	

Table	 1	 shows	 an	overview	of	machine	 learning	
methods	where	they	have	been	used	in	the	loose	
context	 of	 CPS.	 	 They	 have	 been	 used	 to	 carry	
out	 tasks	 in	 three	 different	 applications	 and	
domains:	 smart	 grid,	 transport	 and	
manufacturing.		

ANN	is	one	of	the	most	popular	methods	having	
been	 used	 in	 the	 various	 domains	 and	
applications,	 as	 it	 is	 capable	 of	 doing	 long	 term	
forecasting	 by	 regressing	 the	 stream	 data	
generated	by	multiple	interdependent	factors	or	
single	 variable	 from	 time	 series	 to	 predict	 the	
trend	 in	 power	 generations,	 consumptions	 and	
bus	 travel	 time	 estimations.	 For	 example,	 in	
smart	grid	and	manufacturing,	ANN	is	efficient	to	
predict	 the	 consumption	 of	 consumer	 and	
production	 line	 for	 the	 demand	 side	
management	 and	 load	 management	 power	
generation	management.	 	 Only	 few	 researchers	
use	 ANN	 in	 the	 real-time	 or	 short-term	
predication	 [84][68],	 as	 it	 requires	 considerable	
time	to	process	and	tune	the	parameters	before	
it	 can	 be	 deployed.	 	 	Most	 applications	 require	
large	amount	of	 input	data	and	 training	 time	 to	
produce	 meaningful	 model	 with	 certain	 degree	
of	 accuracy	 and	 confidence	 [65][41][70].	 Even	
though	 ANN	 can	 work	 alone	 and	 produce	
acceptable	results,	but	it	often	works	with	other	
learning	methods	such	as	SVM,	GA,	Bayesian	etc.	
to	 compliment	 ANN	 to	 improve	 training	
efficiency	or	modelling	accuracy	[41].	In	the	table,	
term	ANN	was	 broadly	 used,	 but	 it	 has	 a	 lot	 of	
variants	 with	 various	 activation	 functions	 and	
structures	and	form	a	hybrid	model	to	meet	the	
purposes	 such	 as	 forecasting,	 classification,	
clustering,	 and	 regression	 for	 different	
applications.	 Ref	 [41]	 has	 carried	 out	 detailed	
analysis	 of	 these	 variations	 and	 hybrid	
approaches.	 Here,	 we	 classify	 applications	 into	
this	 category	 using	 ANN	 as	 the	 main	 body	 for	
their	solutions.	

SVM	 has	 been	 widely	 adopted	 to	 address	 the	
issues	in	product	feature	design,	fault	detection,	
forecasting,	 clustering	 and	 pattern	 recognition	

across	 the	 application	 domains	 such	 as	
manufacturing,	smart	grid,	transportation	as	well	
as	 smart	 home	 due	 to	 its	 maturity	 and	
transparency.	 The	 method	 can	 take	 different	
sizes	of	 input	data	to	carry	out	the	classification	
and	 regression,	 so	 it	 has	 been	 used	 in	 the	
applications	 that	 require	 short	 response	 time	
such	as	[85][86].		It	also	used	in	conjunction	with	
other	 machine	 learning	 methods	 such	 as	 ANN,	
and	Bayesian	etc.	by	exploiting	its	characteristics	
to	 provide	 complimentary	 functions	 to	 address	
complex	 problems	 [68][96][97].	 The	 authors	 in	
[97]	 used	 a	 trained	 SVM	 classifier	 from	 the	
classified	 design	 examples	 such	 as	 features	 and	
components,	 which	 are	 obtained	 from	 a	
hierarchical	 clustering,	 to	 recommend	 different	
Additive	 Manufacturing	 design	 features.	 In	 the	
case	study,	it	only	shows	21	design	features	from	
over	 hundreds	 that	 were	 used	 to	 train	 and	 to	
build	model.		

The	 faults	 in	products	or	 tools	 in	manufacturing	
can	 lead	 to	 a	 big	 loss	 of	 time	 and	 a	 serious	
consequence	 if	 they	 are	 not	 detected	 and	
resolved	 earlier.	 Authors	 in	 [81]and	 [82]	
reported	 the	 use	 of	 the	 Random	 forest	 to	
analyse	 the	 big	 data	 for	 tooling	 condition	
monitoring	 in	 milling	 production	 and	 silicon	 in	
semiconductor	 Manufacturing.	 It	 also	 has	 been	
used	in	predicting	the	short	term	electricity	price	
from	 the	 historical	 data	 [79]	 and	 detecting	 the	
false	 electricity	 records	 from	 the	 sensors	 [80].		
Ref	 [51]	 reported	 the	 use	 of	 Random	 forest	 to	
model	 a	 driver	 profile	 effectively.	 From	 these	
reports,	they	all	require	a	reasonable	amount	of	
historic	 data	 for	 the	 training	 and	 to	 make	 the	
accurate	 classification	 and	 time	 was	 not	
considered	 as	 a	 crucial	 factor	 in	 these	
applications.		

Decision	 tree	 is	 a	 well-known	 method	 for	
classification,	 so	 it	 is	 predicable	 that	 the	
researchers	 have	 used	 it	 to	 detect	 the	 faults	 in	
the	power	system	and	motor	movement	and	for	
quality	 management	 in	 the	 production.	 It	 also	
has	 been	 used	 to	 predict	 the	 energy	 demand,	

bus	 travelling	 time,	 and	 to	 determine	 the	
correlation	 between	 traffic	 congestion	 and	 air	
pollution.		

The	 accuracy	 of	 fault	 detection,	 quality	
prediction,	 classification	 and	 rare	 events	
forecasting	 are	 associated	 with	 probabilities,	 as	
all	the	input	factors	cannot	be	certain	due	to	the	
dynamic	 environments	 and	 complex	 human	
behaviour	 and	 interactions.	 The	 Bayesian	
network	 is	 a	 well-studied	 method	 to	 model	
complex	probability	networks	as	it	has	been	used	
in	 different	 applications	 to	 explain	 the	 possible	
occurrences	 of	 outputs	 with	 input	 variables.	 It	
does	 not	 require	 large	 amount	 input	 data	 to	
form	the	network,	 if	 the	probability	of	variables	
is	known.	The	network	can	be	large	and	complex,	
but	 its	 processing	 time	 is	 linear.	 	 Ref	
[51][103][110]	 showed	 the	 consistent	
characteristics	in	these	applications.	

Table	1	also	shows	where	the	Machine	Learning	
(ML)	 methods	 have	 been	 used	 across	 four	
application	 domains	 and	 the	 tasks	 have	 been	
carried	out	to	gain	the	benefits	of	analyzing	and	
interpreting	 large	 volume	 of	 data	 streams	
generated.	 The	 most	 common	 area	 for	 the	
researchers	 and	 industry	 practitioners	 adopting	
the	 methods	 is	 to	 increase	 accuracy	 of	
predication	 and	 forecasting	 in	 their	 CPS	
applications.	 The	 authors	 in	
[41][65][66][67][68][69][79][104]	 reported	
adoption	 of	 ML	 to	 predict	 electrical	 power	
consumption,	demand,	supply	and	 load	 in	order	
to	 improve	 demand	 response	 management	 in	
smart	grid.	ML	is	a	well	employed	tool	to	predict	
traffic	flow,	air	population	emitted	by	cars,	traffic	
congestion	and	travel	time	by	transport	[70][71]	
[72][73][74][105][106][94][123][124][125][126].	
ML	 also	 has	 been	 extensively	 applying	 in	
manufacturing	 by	 predicting	 energy	
consumption	 in	 production	 line,	 machine	
maintenance,	 	 and	 tool	 wearing	 [77]	 [78]	 [102]	
[111][112].	 Diagnosis	 and	 Fault	 detection	 is	
another	function	the	ML	has	been	widely	used	in	
manufacturing	 to	 detect	 root	 cause	 of	 power	

faults	 in	 the	 production,	 tooling	 wearing	 and	
mechanic	 faults,	 cause	 of	 the	 fault	
components/products,	 and	 quality	 control	
[51][99][100][110][117][120].	Smart	grid	also	has	
several	 ML	 applications	 to	 anomaly	 and	 fault	
detections	 such	 as	 non-technical	 loss	 detection,	
blackout	warning,	power	 line	and	cyber	attacks,	
faults	 in	 demand	 management	 and	 power	 line	
faults	[69][88][89][86][90][80][103][104]		.	

The	 utilization	 of	 ML	 for	 mechanical	 fault	
diagnosis	 and	 prevention	 of	 cyber	 attacks	 in	
transport	 system	can	be	more	explored,	as	only	
two		[94][107]	reported	the	benefits	of	ML	in	this	
area.	ML	 is	 also	 a	 popular	 solution	 to	 configure	
plant/production,	 optimize	 electrical	
load/dispatch,	 and	 reduce	 road	 latent	 cost,	
forecast	 short	 term	 in	 electricity	 usage	 and	 etc.	
[75][97][98][113][119][121].	 ML	 has	 been	
exploited	in	other	applications	such	as	clustering	
road	obstacles,	classifying	driving	behaviours	and	
traffic	 incidents	 and	 improving	 production	
quality	[51][75][91][108][109].		

From	 Table	 1,	 it	 can	 be	 seen	 that	 functions	 of	
MLs	 have	 brought	 various	 benefits	 to	 different	
applications	 and	 they	 have	 generated	 different	
levels	 of	 impacts	 in	 various	 areas,	 but	 the	
potentials	 of	 MLs	 are	 not	 fully	 realized	 yet,	 as	
they		still	evolve	and	their	complexity	may	hinder	
the	popularities.			

IV. Temporal	Complexity	
Analysis	

Machine	 learning	 algorithms	 are	 able	 to	 learn	
from	 selected	 samples	 to	 derive	 rules,	 trends,	
patterns	or	properties	of	a	true	population.	The	
concept	 or	 hypothesis	 space,	 however,	 can	 be	
large	 and	 complex	 that	 cannot	 be	 learned	 or	
modelled	 in	 polynomial	 time	 learning	
algorithms,	 but	 exponential	 time.	 	 In	 these	
cases,	 learning	 to	 achieve	 highly	 accurate	
results	 by	 exhaustively	 exploring	 parameter	
values	 may	 not	 be	 possible	 in	 computational	
term,	but	approximation	to	the	true	value.		As	it	
is	 natural,	 the	 goal	 of	 all	 machine	 learning	
applications	 is	 to	 minimise	 the	 differences	

between	 the	 target	 concept	 and	 the	 output	
produced	 by	 the	 trained	 models.	 The	
representation,	 quality	 and	 quantity	 of	 the	
selected	 samples,	 which	 are	 input	 parameters,	
to	 the	 learning	 algorithms	 are	 important	
attributes	 to	 increase	 the	 possibility	 of	 the	
successful	 learning.	 The	probability	 of	 reaching	
successful	 learning	 by	 increasing	 accuracy	 of	
approximating	 to	 the	 target	 concept	 also	
depends	 on	 the	 complexity	 of	 learning	 and	
time.	 Learning	 is	a	 trade-off	between	 time	and	
accuracy.	 In	 principle,	 the	 higher	 accuracy,	 the	
more	 time	 is	 required	 for	 training.	 Information	
and	 computation	 are	 two	 main	 dimensions	 to	
measure	the	complexity	of	 learning	algorithms.	
The	 sample	 complexity	 is	 concerned	 with	
number	 of	 training	 samples,	 distribution	 and	
sufficiency	 leading	 to	 accuracy	 of	 prediction,	
classification	 or	 etc.	 The	 computational	
complexity	of	 a	 solution	method	 is	 to	measure	
the	computational	resources	required	to	derive	
the	 concepts	 from	 the	 training	 data.	 	 This	 can	
be	 further	 classified	 into	 time	 and	 space	
complexity.	 Space	 complexity	 denotes	 the	
memory	 required	 for	 the	computational	model	
being	 selected	 to	 store	 the	 solution.	 The	 time	
complexity	 is	 measured	 by	 the	 number	 of	
computational	executions	in	the	model	to	reach	
or	 approximate	 to	 the	 target	 concept.	 In	 this	
paper,	 we	 are	 more	 interested	 in	 time	
complexity	with	computational	complexity	than	

others.	 We	 intend	 to	 show	 theoretical	
complexity	 rather	 than	 the	 actual	 runtime	 of	
the	algorithms	which	will	be	various	depending	
on	 its	 operating	 computational	 environment	
including	hardware	and	software.	

Table	 2	 shows	 a	 list	 of	 machine	 learning	
methods	used	by	 the	applications	 illustrated	 in	
Table	 1	 and	 their	 corresponding	 time	
complexities,	 represented	 in	 big	 O,	 and	 the	
factors	 contributing	 to	 the	 complexities.	 Since	
there	 are	 many	 different	 variants	 to	 each	
machine	 learning	 method,	 it	 is	 not	 feasible	 to	
list	 them	 exhaustively,	 but	 some	 examples	 to	
illustrate	 measurement	 of	 complexity.	 For	
example,	varieties	of	Bayesian	Network	models	
derived	 from	 various	 approximate	 and	 exact	
inference	 algorithms	 to	 infer	 unobserved	
variables,	at	least	ten	common	ones,	can	lead	to	
different	 computational	 complexities.	 Several	
hybrid	 learning	methods	 including	 at	 least	 two	
existing	 learning	methods	 have	been	proposed	
to	 resolve	 or	 improve	 the	 insufficiency	 of	 one	
individual	 method	 that	 complicate	 the	
measurement	 of	 the	 runtime	 due	 to	 the	
interdependency,	 as	 one	 method	 may	 reduce	
the	 complexity	 for	 the	other	 in	 the	model,	 but	
the	 overall	 complexity	 calculation	 still	 need	 to	
consider	 all	 the	 methods	 involved.	 More	
algorithms	 and	 their	 time	 complexity	 can	 be	
found	in	[127].	

	
Table	2:	Time	complexity	of	some	of	the	most	common	machine	learning	algorithms	

Machine	learning	method	
Theoretical	Time	
complexity	

Factors		

Decision	Tree	Learning[128]	 O(M⋅N2)	
M:	size	of	the	training	samples			
N:	number	of	attributes	

Hidden	Markov	model	
Forward-backward	pass	[52]	

O(N2⋅M)	
N:	number	of	states	
M:	number	of	observations	

Multilayer	Perceptrons	[127]		 O(n⋅M⋅P⋅N⋅e)	

n:	input	variables	
M:	number	hidden	neurons	
P:	number	outputs	
N:	number	of	observations	

e:	Number	of	epochs	

Deep	Learning	(Convolutional	Neural	
Networks)	[129]	

O(D⋅N⋅L⋅S2⋅M2⋅e)	

L:	number	of	input	variables		
N:number	of	filters	(width)		
S:	spatial	size	(length)	of	the	filter	
M:size	of	the	output.	
D:number	of	convolutional	layers	
(depth)	
e:	number	of	epochs	

Support	vector	machine	[130]	 O(N3)	or	O(N2)	
N:	vectors		
C:	upper	bound	of	samples	
N2	when	C	is	small;	N3	when	C	is	big	

Genetic	algorithms	[127]		 O(P⋅logP⋅I⋅C)	
C:	number	of	genes/chromosome	
P:	population	size	
I:	Number	of	iterations	

Radom	forest	[52][131]	 (K⋅N⋅	log	N)	
N:number	of	samples	
K:input	variables		

Self-organizing	Map	[132]		 O(N⋅C)	
N:	input	vector	size	
C:	cycle	size	

Reinforcement	learning	[133]	 O(N3)	 N:number	of	steps	to	reach	the	goal	

Particle	swarm	optimization	(PSO)	[134]	
	

O(P+Gen⋅P⋅D)	
P:	number	of	particles	
D:	number	of	dimensions	
Gen:	number	of	generations	

Bayesian	Network	(exact	learning	models	
of	bounded	tree-width)[135]	

O(3N⋅N(w+1))	
N:size	of	nodes	
W:	width	of	tree.	

For	example,	[119]	used	Q-learning	algorithms	to	
model	 the	 interaction	with	users	 in	smart	home	
with	 maximum	 20	 steps	 to	 interact	 with	 users	
before	 it	 can	 propose	 appropriate	
recommendation.	Its	theoretical	time	complexity	
is	up	to	203	and	the	authors	have	concluded	that	
Q-learning	 algorithm	 outperformed	 greedy	 or	
random	 decision	 strategies	 [119]	 in	 their	
simulated	cases.	 	Figure	1	shows	the	complexity	
level	 in	 big	 O	 when	 the	 number	 of	 steps	
decreases	in	the	simulation.	The	authors	did	not	
report	 the	 actual	 runtime,	 so	 it	 cannot	 be	
correlated	 the	 theoretical	 complexity	 to	
experimental	one.	

	
Figure	 1:	 Complexity	 level	 and	 number	 of	 steps	 in	 Q-
learning	

Ref	 [66]	 	used	 three	machine	 learning	methods,	
SVM,	 LS-SVM	 and	 BPNN,	 for	 energy	 usage	
forecasting	over	283	households	with	500	point	
data	 (hours)	 for	each.	The	 total	number	of	data	
points	for	training	in	the	experiments	is	141,500	
(283*500).	 In	 their	 empirical	 study,	 the	
computational	 times	 of	 these	 methods	 are	
335.39,	 26.22,	 and	 29.28	 seconds	 respectively	
over	 a	 laptop	 to	 produce	 reasonable	 accurate	
results.	 	 The	 authors	 recommend	 running	 these	

approaches	 in	 cloud	 and	 distributed	 computing	
to	 improve	 the	 performance.	 SVM	 has	 better	
accuracy	 in	 reducing	 errors,	 but	 it	 took	 more	
time	 than	 others	 due	 to	 the	 overhead	 of	 using	
GA	 to	 find	 key	 parameters	 for	 SVM.	 The	 BPNN	
has	 more	 errors	 than	 the	 other	 two	 and	 it	
requires	 a	 bit	 more	 runtime	 than	 LS-SVM.	 The	
authors,	however,	did	not	include	key	parameter	
values	such	as	generations	and	 input	points	etc.	
for	 GA	 and	 BPNN,	 so	 to	 derive	 their	 time	
complexity	 in	 relation	 to	 actual	 runtime	 cannot	
be	 fulfilled.	 The	 time	 complexity	 of	 LS-SVM	 is	
O(1415002).	Figure	2	shows	the	time	complexity	
of	 LM-SVM	by	applying	 the	data	 from	 [66]	with	
simulation	 output	 and	 the	 actual	 runtimes	 in	
seconds.	
This	 shows	 actual	 runtimes	 against	 the	
complexity	 level	 and	 the	 correlation	 between	
them	 without	 carrying	 out	 the	 actual	
experiments,	 the	 researchers	 can	 estimate	 its	
actual	 runtime	by	giving	the	number	of	samples	
when	 the	 underlying	 machine	 or	 environment	
has	the	same	characteristics.	

	
Figure	2:	Time	complexity	of	LM-SVM	

The	 authors	 in	 [136]	 report	 the	 applications	 of	
Particle	 swarm	 optimization	method	 to	 balance	
different	 loads	 by	 considering	 price	 to	 dispatch	
them.	 The	 test	 case	 one	 includes	 6	 factors	
(dimensions),	 6	 generators	 (particles)	 	 and	 100	
generations	to	evolve,	and	its	time	complexity	in	
theory	 is	 3606	 (6+6*100*6)	 before	 it	 has	 a	
satisfactory	convergent	result.	 	 In	their	test	case	
two,	 it	 increases	to	7	factors,	40	generators	and	
400	 generations,	 so	 40+40*400*7	 (is	 the	
theoretical	 time	 complexity	 is	 112,040.	 In	
another	test	case	it	has	5	factors,	20	generators,	
and	400	generations	(40,020	in	O)	and	its	actual	
computational	runtime	is	0.29282	second	that	is	
around	10	and	200	 times	slower	 than	 the	other	

approaches	 [136]	 in	 the	 simulation.	 Figure	 3	
shows	 the	 relationship	between	 complexity	 and	
actual	 runtime	by	extending	the	 figures	given	 in	
the	paper.	The	 line	 is	the	time	complexity	 in	 log	
and	 the	 solid	 line	 is	 actual	 runtime.	 	 The	
researchers	 can	 refer	 this	 to	 approximate	 the	
actual	 runtime	 of	 an	 application	with	 the	 same	
computational	 resources	 by	 giving	 key	
parameter	 values	 of	 the	 learning	method.	 	 The	
approximation	is	not	rigid,	as	we	assume	that	the	
space	complexity	is	changing	linearly.	

Figure	 3:	 relationship	 between	 complexity	 and	 actual	
runtime	of	particle	swarm	optimization	method	

For	deep	NN	learning	methods	such	as	CNN,	the	
weights	 in	 the	 convolutional	 layers	 are	 trained	
and	 updated	 in	 a	 similar	 way	 as	 traditional	
ANNs/MLPs	(Multilayer	Perceptrons)	except	that	
the	 number	 of	 filters	 and	 layers	 are	 orders	 of	
magnitude	higher	than	those	in	traditional	MLPs.	
The	 authors	 in	 [129]	 report	 their	 experimental	
results	 on	 computational	 time	 complexity	 of	 a	
CNN	model	by	 varying	different	 key	parameters	
such	as	depth,	filter	size	and	number,	width	and	
pooling	 layer	 etc.	 of	 the	 network	 to	 find	 their	
trade-offs	 between	 two	 parameters	 to	
investigate	 the	 overall	 performance	 in	 terms	 of	
time	complexity	and	output	accuracy.	We	share	
the	 same	 view	 with	 the	 authors	 [129]	 that	
introducing	 computational	 time	 and	 memory	
constraints	 can	 give	 better	 understanding	 the	
value	 of	 machine	 learning	 methods	 in	 realistic	
business	applications.		

The	 training	 of	 these	 deep	 NN	 models	 needs	
massive	 resources	 (e.g.	 to	 accommodate	 the	
training	 data)	 and	 time,	 they	 should	 be	 carried	

out	 on	 the	 Cloud.	 However,	 the	 operation	 time	
of	 these	 models	 is	 only	 proportional	 to	 the	
number	 of	 neurons	 no	 matter	 how	 large	 the	
training	data	is,	the	on-line	analysis	tasks	can	be	
deployed	on	the	Edge/Fog.		

As	 it	 has	 been	 observed	 in	 this	 analysis,	 only	 a	
few	works	 report	 the	 empirical	 time	 complexity	
of	 their	 approaches.	 Therefore,	 the	 estimation	
on	 the	 empirical	 time	 complexity	 of	 a	 training	
algorithm	 still	 has	 rooms	 for	 more	 extensive	
study.	This	information	may	be	vital	for	decision	
making	 on-the-fly	 if	 a	 learning	 task	 can	 be	
deployed	in	the	edge	devices.		

V. Online	Learning	Methods	
If	we	take	a	look	at	Table	2	we	will	observe	that	
the	theoretical	complexity	of	the	classic	learning	
algorithms	 reported	 in	 the	 literature	 review	
normally	 takes	 into	 consideration	 many	 terms	
(e.g.,	 number	 of	 samples,	 iterations,	 structure	
parameters,	 etc.).	 In	 theory,	 this	 could	 result	 in	
high	 order	 polynomial	 behaviour,	 which	 would	
deter	 the	 deployment	 of	 the	 learning	 phase	 in	
edge	 devices.	 This	 is	 because	 firstly	 over	 time,	
more	 and	 more	 streaming	 data	 will	 be	
accumulated	 and	 it	 is	 impractical	 and	 often	
infeasible	 to	 accommodate	 large	 volumes	 of	
streaming	 data	 in	 the	machine’s	main	memory;	
secondly,	 it	 is	 also	 infeasible	 to	 regularly	
reconstruct	 new	 models	 from	 the	 scratch	 with	
accumulated	streaming	data	in	real-time;	further	
CPS	data	streams	feature	the	perishable	insights,	
i.e.,	information	that	must	be	acted	upon	fast,	as	
insights	 obtained	 from	 streaming	 data,	 such	 as	
from	 sensors,	 quickly	 lose	 their	 value	 if	 they	
were	to	be	processed	in	‘batch	mode’)	[16].	As	a	
result,	 a	 new	 paradigm	 of	 learning,	 i.e.	
incremental	 and	 On-line	 learning	 algorithms	
should	be	adopted.	 Losing	et	 al.	 [137]	gives	 the	
definition	of	 incremental	 learning	for	supervised	
learning	 as	 below	 (we	 change	 the	
notations/symbols	for	consistency	reasons).	

An	 incremental	 learning	 algorithm	
generates,	on	a	given	stream	of	training	
data	𝑆",	𝑆#…,	𝑆$,	a	sequence	of	models	

𝐻" ,	 𝐻# …,	 𝐻$,	 where	 𝑆(is	 labeled	
training	 data	𝑆(=	 (𝑋(,	𝑌()	 ∈	𝑅2 	×	
{1,	 .	 .	 .	 ,	 C}	 and	𝐻(:	𝑅2	{1,	 .	 .	 .	 ,	 C}	 is	 a	
model	 function	 solely	 depending	 on	
𝐻(8" 	and	 the	 recent	 p	 examples	
𝑆(,.	 .	 .	 ,	𝑆(8: 	,	 with	 p	 being	 strictly	
limited.	

Losing	 et	 al.	 [137]	 further	 	 specify	 on-line	
learning	 algorithms	 as	 incremental	 learning	
algorithms	 which	 are	 additionally	 bounded	 in	
model	 complexity	 and	 run-time,	 capable	 of	
endless/lifelong	 learning	 on	 a	 device	 with	
restricted	resources.	

Incremental	and	on-line	 learning	algorithms	aim	
for	minimal	processing	time	and	space;	and	thus	
fit	in	CPS	data	processing	environments.	

Losing	 et	 al.	 [137]	 evaluate	 eight	 popular	
incremental	 methods	 representing	 different	
algorithm	 classes	 such	 as	 Bayesian,	 linear,	 and	
instance-based	models	as	well	as	tree-ensembles	
and	 neural	 networks.	 Experiments	 are	 carried	
out	to	evaluate	these	algorithms	with	respect	to	
accuracy,	 convergence	 speed	 as	 well	 as	 model	
complexity,	 aiming	 at	 facilitating	 the	 choice	 of	
the	 best	 method	 for	 a	 given	 application.	
However,	 it	 primarily	 covers	 supervised	
incremental	 learning	 algorithms	 with	 stationary	
datasets,	although	robustness	of	the	methods	to	
different	 types	 of	 real	 concept	 drift	 are	 also	
investigated.	

Gama	et	al.	[138]	considers	dynamically	changing	
and	 non-stationary	 environments	 where	 the	
data	 distribution	 can	 change	 over	 time	 yielding	
the	phenomenon	of	concept	drift,	which	applies	
to	 most	 of	 the	 real	 world	 CPS	 applications.	
Adaptive	 learning	 algorithms,	 defined	 as	
advanced	 incremental	 learning	 algorithms	 that	
are	 able	 to	 update	 predictive	 models	 online	
during	their	operation	to	react	to	concept	drifts,	
are	explored.	Taxonomy	for	adaptive	algorithms,	
presented	 in	 four	 modules	 as	 memory,	 change	
detection,	 learning,	 and	 loss	 estimation,	 is	
proposed;	and	the	methods	within	each	module	

are	 also	 listed.	 Gama	 et	 al.	 [138]	 focuses	 on	
online	supervised	learning.	

Ade	 et	 al.	 [139]	 includes	 some	 unsupervised	
incremental	learning	approaches	that	learn	from	
unlabelled	 data	 samples	 to	 adjust	 pre-learned	
concepts	to	environmental	changes.	Most	of	the	
incremental	 clustering	 algorithms	 for	 pattern	
discovery	rely	on	similarity	measure	between	the	
data	 points.	 An	 exemplary	 approach	 is	 called	
Concept	Follower	(CF)	that	includes	CF1	and	CF2	
[140].	 CF1	 and	 CF2	 learn	 from	 unlabelled	 data	
samples	 to	 adjust	 pre-learned	 concepts	 to	
environmental	 changes.	 Initially,	 a	 supervised	
learner	 is	 used	 to	 learn	 and	 label	 a	 set	 of	
concepts.	When	 a	 new	 sample	 is	 collected,	 CF1	
calculates	 the	 distance	 of	 the	 sample	 to	 all	
concepts	 and	 the	 concept	 with	 the	 minimal	
distance	 to	 the	 sample	 is	 identified.	 If	 the	
distance	is	smaller	than	the	predefined	threshold,	
CF1	 considers	 the	 concept	 a	 match	 and	 then	
slightly	 shifts,	 by	 a	 learning	 rate	 parameter,	
towards	 the	 classified	 sample	 to	 adjust	 to	 the	
concept	 drift;	 otherwise	 CF1	 detects	 the	 abrupt	
change	 and	 repeats	 the	 initial	 supervised	
learning	 stage.	 Compared	 to	 CF1,	 CF2	 supports	
problems	 areas	 with	 unbalanced	 sample	 ratio	
between	concepts.	This	 is	done	by	CF2	adjusting	
all	 concepts	 in	 the	 proximity	 of	 the	 sample	
instead	 of,	 as	 does	 CF1,	 adjusting	 only	 the	
concept	closest	to	the	sample.	

Next,	we	 discuss	 on	 some	 of	 the	most	 relevant	
online	 approaches	 to	 the	 machine	 learning	
algorithms	identified	in	this	article.	

Artificial	Neural	Networks	

Classically,	 artificial	 neural	 networks	 are	 trained	
using	 a	 training	 set	 and	 optimization	 methods	
such	as	gradient	descent	and	backpropagation	to	
minimize	a	cost	 function	correlated	 to	 the	error	
derived	from	the	current	state	of	the	network.		

The	 online	 version	 can	 adapt	 to	 the	 arrival	 of	
new	 data	 consists	 of	 pre-training	 the	 network	
with	all	the	available	training	set,	and	then	adapt	
the	 pre-trained	 network	 by	 using	 stochastic	

gradient	descent	over	the	new	series	of	available	
data.	 This	 type	 of	 setting	 would	 benefit	 from	 a	
combination	of	both	cloud	technologies	(i.e.,	for	
pre-training	 the	 network),	 and	 edge	 computing	
(i.e.	for	adapting	the	network).	

While	 the	 use	 of	 stochastic	 gradient	 descent	
allows	 adopting	 a	 batch	 algorithm	 like	
backpropagation	 in	 a	 non-batch	 setting,	 there	
are	specialized	learning	algorithms,	called	online	
sequential	 learning	methods,	 for	 training	neural	
networks	 in	 an	 online	 setting	 in	 which	 data	
becomes	 available	 with	 time	
[141][142][143][144].	 They	 can	 be	 efficient	 and	
more	 adequate	 for	 being	 deployed	 in	 an	 edge	
device	 as	 they	 do	 not	 require	 to	 store	 past	
training	 samples.	 The	online	 sequential	 learning	
methods	 tend	 to	 be	 ad-hoc	 for	 networks	 with	
specific	 activation	 functions,	 or	 with	 specific	
architectures	 (e.g.,	 single	 hidden	 layer).	
Therefore,	 the	 complexity	 of	 problems	
represented	 by	 these	 networks	 may	 not	 be	 as	
vast	 as	 the	 one	 represented	 by	 classic	 neural	
networks	or	deep	learning	approaches.	

Decision	trees	

The	classic	learning	decision	trees	require	that	all	
of	 the	 training	 samples	 are	 considered	 when	
computing	 information	gain	 [145].	This	 is	hardly	
applicable	 in	 a	 stream	 analytics	 context,	 as	
training	 samples	 arrive	 constantly.	 Therefore,	 it	
requires	 different	 learning	 mechanisms	 to	
properly	 learn	 decision	 trees	 in	 a	 stream	
analytics	 context,	 which	 the	 trees	 can	 evolve	
from	a	stream	of	data.	Some	approaches	with	a	
default	tree	structure	provide	a	series	of	greedy	
steps	 to	 adapt	 to	 the	 new	 training	 samples.	
These	 includes	 ID5R	 algorithm	 [146],	 an	
adaptation	of	the	popular	ID3	learning	algorithm	
for	 stream	 data,	 and	 ITI	 [147].	 Nevertheless,	
these	 greedy	 changes	 were	 in	 some	 cases	
suboptimal	 and	 ended	 up	 in	 inappropriate	
adaptations	to	change.	

The	 other	 approach	 to	 learning	 decision	 trees	
from	streams	 is	 to	maintain	a	set	of	statistics	at	

nodes	and	only	split	a	node	when	sufficient	and	
statistically	significant	information	is	available	to	
make	 the	 split.	 Hoeffding	 inequality	
[148][149][150]	 are	 the	 backbones	 to	 these	
approaches,	 which	 provide	 bounds	 for	 the	
number	 of	 observations	 that	 are	 necessary	 to	
obtain	 an	 estimated	 mean	 that	 does	 not	 differ	
from	 the	 mean	 of	 the	 underlying	 random	
variable.	Some	researchers	have	recently	argued	
that	 the	 assumptions	 underlying	 the	 Hoeffding	
inequality	are	not	appropriate	when	constructing	
online	trees.	Some	methods	split	at	nodes	of	the	
decision	tree	base	on	other	modeling	paradigms	
such	 as	 McMiarmid’s	 bound	 [151],	 or	 Gaussian	
processes	[152].	

Random	forests	

The	 general	 idea	 behind	 online	 random	 forests	
consists	of	providing	both	a	method	to	carry	out	
online	bagging,	and	a	method	to	carry	out	online	
learning	of	random	trees.	Abdulsalam	et	al.	[153]	
take	an	approach	that	carries	out	online	bagging	
by	 dividing	 the	 incoming	 samples	 of	 data	 into	
blocks	 with	 a	 certain	 size.	 Then,	 blocks	 of	 data	
randomly	 selected	 are	 employed	 for	 either	
training	 or	 testing	 a	 tree	 in	 the	 model.	 The	
training	block	is	redirected	to	a	chosen	tree,	and	
an	 online	 learning	 algorithm	 for	 trees	 is	
employed	 to	 update	 the	 current	 tree.	 Later	 on,	
the	 learning	model	 is	 enhanced	 to	 adapt	 to	 the	
random	arrival	of	labeled	examples	in	the	stream,	
with	blocks	of	different	sizes	and	frequency	[154].	

Another	 alternative	 to	 the	 online	 bagging	
process	 described	 above	 is	 employed	 by	 Saffari	
et	 al.	 [155].	 In	 this	 case,	 each	 new	 sample	 is	
presented	in	a	number	of	times	that	is	controlled	
by	a	Poisson	distribution,	to	each	random	tree	in	
the	 model.	 Then,	 the	 random	 trees	 gradually	
grow	by	creating	random	tests	and	thresholds	at	
decision	nodes	and	choosing	the	best	one	after	a	
number	 of	 statistics	 have	 been	 gathered	 that	
guarantee	that	the	test	is	the	best	from	the	ones	
randomly	created	at	the	decision	node.	

Other	 approaches	 opt	 for	 avoiding	 online	
bagging	at	the	forest	 level,	and	the	subsampling	
is	carried	out	at	the	tree	level	[156].	When	a	new	
sample	arrives	to	the	random	forest,	this	sample	
is	 presented	 to	 all	 of	 the	 trees.	 Then,	 the	
individual	tree	decides	if	the	sample	will	be	used	
to	 influence	the	structure	of	the	tree	or	used	to	
estimate	 class	 membership	 probabilities	 in	 the	
leaf	they	are	assigned	to.	

Support	vector	machines	

Classification	 in	 support	 vector	 machines	 are	
based	 on	 the	 idea	 of	 finding	 the	 maximum	
margin	hyperplane	that	separates	elements	from	
different	 categories.	 By	 definition,	 one	 should	
have	 access	 to	 the	 entire	 training	 dataset	 in	
order	 to	 build	 such	 maximum	 margin	
hyperplanes.	 Otherwise,	 there	 would	 be	 no	
guarantee	 that	 estimated	 hyperplanes	 are	
optimal.	 This	 assumption	 limits	 the	 applicability	
of	 classic	 support	 vector	 learning	 algorithms	 to	
an	online	setting,	and	it	forces	scholars	to	devise	
new	 methods	 that	 are	 adapted	 to	 the	 online	
setting.	

The	 incremental	 approach	 to	 support	 vector	
learning	typically	requires	to	determine	if	a	new	
sample	 should	 become	 a	 support	 vector	 that	
modifies	 the	 current	 hyperplane.	 The	 algorithm	
also	needs	 to	determine	 if	previously	 calculated	
support	 vectors	 still	 yield	 as	 relevant	 after	 the	
observation	 of	 the	 new	 sample,	 and	 remove	
those	 that	 are	 no	 longer	 relevant.	 Otherwise,	
online	 approaches	 to	 support	 vector	 learning	
incur	 in	 the	 risk	 of	 growing	 linearly	 with	 the	
infinite	 number	 of	 samples	 [157].	 To	 tackle	 this	
problem,	there	have	been	a	number	of	proposals	
that	 aim	 to	 build	 a	 support	 vector	 model	 with	
adequate	 predictive	 performance	 while	 also	
minimizing	the	number	of	support	vectors	in	the	
resulting	model	[157][158][159][160].	

VI. Discussions	
So	 far	 machine	 learning	 methods	 of	 various	
categories,	 including	 some	 deep	 learning	 ones)	
have	 been	 employed	 for	 various	 data	 streams	

analysis	 purposes.	 Little	 literature	 has	 studied	
the	 integration	 of	 these	 methods	 to	 the	 Cloud	
and	Fog	computing	architecture.	

The	 very	 nature	 of	 CPS	 requires	 a	 computing	
paradigm	that	offers	latency	sensitive	monitoring,	
intelligent	 control	 and	 data	 analytics	 for	
intelligent	 decision	 making.	 In	 contrast	 to	 the	
Cloud,	 the	 Fog	 performs	 latency-sensitive	
applications	 at	 the	 edge	 of	 network,	 however	
latency	 tolerant	 tasks	 are	 efficiently	 performed	
in	the	Cloud	for	deep	analytics	[161].	

Cloud	 computing	 provide	 on	 demand	 and	
scalable	storage	and	processing	services	that	can	
scale	 up	 to	 requirements	 of	 IoT	 based	 CPS.	
However,	 for	 healthcare	 applications,	
manufacturing	 control	 applications,	 connected	
vehicle	 applications,	 emergency	 response,	 and	
other	 latency	 sensitive	 applications,	 the	 delay	
caused	 by	 transferring	 data	 to	 the	 cloud	 and	
back	 to	 the	 application	 becomes	 unacceptable	
[162][163][164].	 The	 latency	 sensitive	
applications	rely	on	the	Fog	for	their	time	critical	
functionality.	The	adoption	of	Fog	computing	not	
only	greatly	 improves	the	response	time	of	time	
sensitive	 application	 but	 also	 brings	 some	 new	
challenges	 such	 as	 business	 model,	 security	
privacy	and	scalability	etc.		It	is	perceived	that	in	
time	 critical	 services	 fog	 computing	 is	 cost	
effective	as	compared	to	cloud	computing	due	to	
its	 less	 latency	 and	 in	 some	 cases	 due	 to	 spare	
capacity	 of	 locally	 available	 resources.	 The	 view	
is	endorsed	by	study	carried	out	 in	 [163],	which	
shows	that	with	high	number	of	latency	sensitive	
applications	 Fog	 computing	 outperforms	 Cloud	
computing	 in	 term	 of	 power	 consumption	
service	latency	and	cost.	

As	generally	the	data	stream	analytics	processes	
the	 data	 in	 one	 scan	 due	 to	 the	 perishable	
insights.	 Some	 algorithms,	 such	 as	 	 the	 cluster	
removal	approach	in	CURE	and	ROCK	based	HAC	
(Hierarchical	 	 Agglomerative	 	 Clustering)	
algorithms,	 are	 infeasible	 for	 streaming	 data	 as	
they	 requires	 multiple	 scans	 of	 data	 [165].	 In	
addition,	 for	 memory-based	 methods	 such	 as	

Parzen	 probability	 density	 model	 and	 nearest-
neighbour	 methods,	 as	 the	 entire	 training	 set	
needs	to	be	stored	in	order	to	make	predictions	
for	future	data	points	and	a	metric	is	required	to	
be	defined	to	measures	the	similarity	of	any	two	
vectors	 in	 input	 space,	 they	 are	 both	 memory	
consuming	 and	 generally	 slow	 at	 making	
predictions	for	test	data	points,	they	also	should	
not	be	employed	 for	data	 stream	analysis,	even	
though	the	Fog	computing	is	introduced.	

ANN	(MLP),	DT	and	SVM	are	the	most	commonly	
used	machine	learning	methods	in	surveyed	CPS.	
In	 terms	 of	 accuracy,	 it	 is	 observed	 that	 the	
performance	of	these	machine	learning	methods	
is	task	dependent.	For	example,	ref	[75]	pointed	
out	 that	 the	 best	 classifier	 differs	 according	 to	
the	 weather	 conditions.	 The	 classifier	 based	 on	
MLP	 behaves	 better	 than	 SVM	 (and	 SOM)	 for	
sunny	 and	 foggy	 conditions,	 whereas	 for	 rainy	
conditions,	 the	 SVM-based	 model	 is	 the	 most	
appropriate.	 Ref	 [166]	 concluded	 that	 in	
automatic	 Stereotypical	 Motor	 Movements	
(SMM)	recognition,	SVM	appears		to		outperform		
DT		on		overall	accuracy	by	~6	percentage	points	
(although	 at	 times	 	DT	 	 did	 	 outperform	 	 SVM),	
regardless	 of	 feature	 set	 used.	 In	 terms	 of	 the	
operation	 (classification	 or	 regression)	 time,	 ref	
[107]	discovered	 the	noticeably	 lower	detection	
latency	provided	by	DT	while	ref	[76]	ascertained	
that	 SVM	 was	 not	 fast	 enough	 for	 real-time	
classification	 (classification	 time	 being	 around	
2.2	 seconds)	 compared	 to	 ANN	 with	 seven	
hidden	 nodes	 	 (classification	 time	 being	 around	
100	milliseconds).		

For	 those	machine	 learning	methods	 that	 need	
massive	 training	 data	 and	 take	 iterations	 to	
converge,	such	as	ANN,	HMM	and	reinforcement	
learning	methods,	 it	 is	 recommended	 to	 deploy	
the	 training	 tasks	 onto	 the	 Cloud	 while	 deploy	
the	on-line	analysis	tasks	on	the	Edge/Fog.		

For	deep	NN	learning	methods	such	as	CNN,	the	
weights	 in	 the	 convolutional	 layers	 are	 trained	
and	 updated	 in	 the	 similar	 way	 as	 traditional	
MLPs	 (Multilayer	 Perceptrons)	 except	 that	 the	

number	 of	 weights	 and	 layers	 are	 orders	 of	
magnitude	higher	 than	MLPs.	 As	 the	 training	 of	
these	deep	NN	models	needs	massive	resources	
(e.g.	 to	 accommodate	 the	 training	 data)	 and	
time,	 they	 should	 be	 carried	 out	 on	 the	 Cloud.	
However,	the	operation	latency	of	these	models	
is	only	proportional	to	the	number	of	neurons	no	
matter	how	large	the	training	data	is,	the	on-line	
analysis	tasks	can	be	deployed	on	the	Edge/Fog.	

When	 machine	 learning	 methods	 are	 deployed	
on	 the	 Edges,	 trade-offs	 are	 needed	 among	
accuracy,	operation	time,	and	the	parameters	of	
these	 methods	 such	 as	 sliding	 window	 sizes,	
number	 of	 iterations	 and	 prediction/forecast	
time	lags	[51][71].			

Applications	 dependent	 data	 pre-processing	
proved	 effective	 in	 improving	 the	 performance	
of	 the	 data	 analysis.	 For	 example,	 in	 ref	 [76],	
before	 employing	 	 an	 ANN	 classifier,	 a	 simple	
gradient	 detector	 and	 an	 intensity-bump	
detector	 with	 loose	 (low)	 threshold	 values	 are	
applied	 to	 quickly	 filter	 out	 non-lane	 markings.	
As	 the	 remaining	 samples	 are	 much	 smaller	 in	
number,	 the	 classification	 time	was	 significantly	
reduced.	 Due	 to	 space	 limitations,	 this	 paper	
doesn’t	 investigate	 the	 data	 pre-processing	
techniques	for	machine	learning	methods	in	CPS.	

The	 distributed	 and	 parallel	 environment	
provided	 by	 Cloud	 and	 Fog	 computing	 may	
facilitate	 the	 execution	 of	 machine	 learning	
methods	 (such	 as	 random	 forest)	 to	 further	
reduce	the	classification	time	as	the	sets	of	sub-
tasks	 (such	 as	 the	 decision	 trees	 involved	 in	
random	forest)	can	be	run	in	parallel.	

The	data	stream	properties	also	could	affect	the	
choice	of	 the	methods.	 For	example,	 fuzzy	 logic	
is	 more	 capable	 of	 dealing	 with	 the	 fuzzy	
information	 without	 requiring	 large	 volume	 of	
samples,	the	existing	deep	learning	methods	will	
require	 substantial	 number	 of	 samples	 in	 the	
training	 process,	 and	 Rough	 set	 is	 good	 at	
dealing	with	incomplete	information.		In	addition,	
ANN	 is	 likely	 more	 appropriate	 to	 deal	 with	

multiple	 variants	 data	 sets	 than	 reinforce	
learning	methods..	

Conclusion	 and	 Future	 Research	
Directions	
Data	 stream	 analytics	 is	 one	 of	 the	 core	
components	 in	 CPS	 and	 machine	 learning	
methods	have	proved	to	be	effective	techniques	
of	 data	 analytics.	 The	 rise	 of	 Cloud	 and	 Fog	
computing	 paradigm	 calls	 for	 the	 study	 of	 how	
the	 machine	 learning	 based	 CPS	 data	 stream	
analytics	 should	 be	 integrated	 to	 such	 a	
paradigm	 in	 order	 to	 better	 meet	 the	
requirements,	 such	 as	 mission	 criticality	 and	
time	 criticality,	 of	 the	 cyber	 physical	 systems.	
This	 paper	 investigated	 and	 summarized	 the	
existing	machine	 learning	methods	 for	CPS	data	
stream	 analytics	 from	 various	 perspectives,	
especially	 from	 the	 time	 complexity’s	 point	 of	
view.	The	investigation	led	to	the	discussion	and	
guidance	 of	 how	 the	 CPS	 machine	 learning	
methods	 should	be	 integrated	 to	 the	Cloud	and	
Fog	 architecture.	 In	 the	 future,	 more	 effective	
and	 efficient	 machine	 learning	 methods	 should	
be	 studied	 for	 analysing	 ever	 growing	 data	
streams	 in	 CPS,	 such	 as	 taking	 advantages	 of	
distributed	and	parallel	environment	provided	by	
the	 Cloud	 and	 Fog	 computing	 [167],	 developing	
hierarchical	 and	 composable	 machine	 learning	
methods	 that	 are	 well	 suited	 to	 partitioned	
execution	 across	 the	 Cloud	 and	 the	 Edge,	
studying	transfer	learning	and	continual	learning	
techniques	 to	 deal	 with	 the	 non-stationarity	 of	
data	 streams.	 In	 the	meanwhile,	 studies	 should	
be	carried	out	on	the	development	of	Cloud	and	
Edge	systems	that	facilitate	the	CPS	data	stream	
analytics	by	accommodating	the	discrepancy	and	
the	 heterogeneity	 between	 the	 capabilities	 of	
edge	devices	and	datacenter	servers	and	among	
the	 edge	 devices	 themselves;	 providing	
uniformed	 APIs	 [168]	 and	 services	 [169][170],	
and	etc.	

Acknowledgement		
This	 work	 is	 partially	 supported	 by	 EU	 H2020	

programme	 (Project	 NOESIS	 under	 grant	 no	
769980).	
	

Reference	
[1]	 E.A.	Lee,	The	past,	present	and	future	of	

cyber-physical	systems:	A	focus	on	
models,	Sensors	(Switzerland).	15	(2015)	
4837–4869.	doi:10.3390/s150304837.	

[2]	 R.	Chaâri,	F.	Ellouze,	A.	Koubâa,	B.	
Qureshi,	N.	Pereira,	H.	Youssef,	E.	Tovar,	
Cyber-physical	systems	clouds:	A	survey,	
Comput.	Networks.	108	(2016)	260–278.	
doi:10.1016/j.comnet.2016.08.017.	

[3]	 A.	Rayes,	S.	Salam,	Internet	of	Things	(IoT)	
Overview,	Internet	Things	From	Hype	to	
Real.	(2017)	1–34.	
doi:10.1016/J.FUTURE.2013.01.010.	

[4]	 NIST,	Strategic	Vision	and	Business	
Drivers	for	21st	Century	Cyber-Physical	
Systems,	2013.	
https://www.nist.gov/sites/default/files/
documents/el/Exec-Roundtable-
SumReport-Final-1-30-13.pdf.	

[5]	 E.	a	Lee,	Cyber-Physical	Systems	-	Are	
Computing	Foundations	Adequate?,	
October.	1	(2006)	1–9.	
http://citeseerx.ist.psu.edu/viewdoc/dow
nload?doi=10.1.1.84.8011&rep=rep1
&type=pdf.	

[6]	 L.	Wang,	M.	Törngren,	M.	Onori,	Current	
status	and	advancement	of	cyber-physical	
systems	in	manufacturing,	J.	Manuf.	Syst.	
37	(2015)	517–527.	
doi:10.1016/j.jmsy.2015.04.008.	

[7]	 NSF,	Cyber-Physical	Systems	(CPS),	2017.	
https://www.nsf.gov/pubs/2017/nsf1752
9/nsf17529.htm.	

[8]	 J.	Shi,	J.	Wan,	H.	Yan,	H.	Suo,	A	survey	of	
Cyber-Physical	Systems,	2011	Int.	Conf.	
Wirel.	Commun.	Signal	Process.	(2011)	1–
6.	doi:10.1109/WCSP.2011.6096958.	

[9]	 X.	Guan,	S.	Member,	B.	Yang,	C.	Chen,	W.	
Dai,	Y.	Wang,	A	comprehensive	overview	
of	cyber-physical	systems:	from	
perspective	of	feedback	system,	IEEE/CAA	
J.	Autom.	Sin.	3	(2016)	1–14.	
doi:10.1109/JAS.2016.7373757.	

[10]	 S.K.	Khaitan,	J.D.	McCalley,	Cyber	physical	

system	approach	for	design	of	power	
grids:	A	survey,	2013	IEEE	Power	Energy	
Soc.	Gen.	Meet.	(2013)	1–5.	
doi:10.1109/PESMG.2013.6672537.	

[11]	 J.	Lee,	B.	Bagheri,	H.A.	Kao,	A	Cyber-
Physical	Systems	architecture	for	Industry	
4.0-based	manufacturing	systems,	Manuf.	
Lett.	3	(2015)	18–23.	
doi:10.1016/j.mfglet.2014.12.001.	

[12]	 S.A.	Asadollah,	R.	Inam,	H.	Hansson,	A	
survey	on	testing	for	cyber	physical	
system,	Lect.	Notes	Comput.	Sci.	
(Including	Subser.	Lect.	Notes	Artif.	Intell.	
Lect.	Notes	Bioinformatics).	9447	(2015)	
194–207.	doi:10.1007/978-3-319-25945-
1_12.	

[13]	 A.	Humayed,	J.	Lin,	F.	Li,	B.	Luo,	Cyber-
Physical	Systems	Security	--	A	Survey,	
4662	(2017).	
doi:10.1109/JIOT.2017.2703172.	

[14]	 I.	Akkaya,	Data-Driven	Cyber-Physical	
Systems	via	Real-Time	Stream	Analytics	
and	Machine	Learning,	(2016)	136.	
https://www2.eecs.berkeley.edu/Pubs/T
echRpts/2016/EECS-2016-159.pdf.	

[15]	 J.	a	Silva,	E.R.	Faria,	R.C.	Barros,	E.R.	
Hruschka,	A.C.P.L.F.	De	Carvalho,	J.	Gama,	
Data	Stream	Clustering:	A	Survey,	{ACM}	
Comput.	Surv.	46	(2013)	13:1–13:31.	
doi:10.1145/2522968.2522981.	

[16]	 M.	Mousavi,	A.A.	Bakar,	M.	Vakilian,	Data	
stream	clustering	algorithms:	A	review,	
Int.	J.	Adv.	Soft	Comput.	Its	Appl.	7	(2015)	
1–15.	

[17]	 M.D.	Jayanthi,	A	Framework	for	Real-time	
Streaming	Analytics	using	Machine	
Learning	Approach,	(2016)	85–92.	

[18]	 E.	Alpaydın,	Introduction	to	Machine	
Learning	Second	Edition,	2010.	

[19]	 SAS,	Machine	Learning:	What	it	is	&	why	
it	matters,	(n.d.).	
https://www.sas.com/it_it/insights/analy
tics/machine-learning.html.	

[20]	 P.	Bhavsar,	I.	Safro,	N.	Bouaynaya,	R.	
Polikar,	D.	Dera,	Mchine	Learning	in	
Transportation	Data	Analysis,	in:	Data	
Anal.	Intell.	Transp.	Syst.,	2017:	pp.	283–
307.	

[21]	 S.	Distefano,	G.	Merlino,	A.	Puliafito,	A	

utility	paradigm	for	IoT:	The	sensing	
Cloud,	Pervasive	Mob.	Comput.	20	(2015)	
127–144.	doi:10.1016/j.pmcj.2014.09.006.	

[22]	 B.	Christophe,	M.	Boussard,	M.	Lu,	A.	
Pastor,	V.	Toubiana,	The	web	of	things	
vision:	Things	as	a	service	and	interaction	
patterns,	Bell	Labs	Tech.	J.	16	(2011)	55–
61.	doi:10.1002/bltj.20485.	

[23]	 Y.	Zhang,	M.	Qiu,	C.-W.	Tsai,	M.M.	Hassan,	
A.	Alamri,	Health-CPS:	Healthcare	Cyber-
Physical	System	Assisted	by	Cloud	and	Big	
Data,	IEEE	Syst.	J.	11	(2017)	88–95.	
doi:10.1109/JSYST.2015.2460747.	

[24]	 M.S.	Hossain,	M.M.	Hassan,	M.	Al	Qurishi,	
A.	Alghamdi,	Resource	Allocation	for	
Service	Composition	in	Cloud-based	Video	
Surveillance	Platform,	in:	2012	IEEE	Int.	
Conf.	Multimed.	Expo	Work.,	IEEE,	2012:	
pp.	408–412.	
doi:10.1109/ICMEW.2012.77.	

[25]	 A.	Botta,	W.	de	Donato,	V.	Persico,	A.	
Pescapé,	Integration	of	Cloud	computing	
and	Internet	of	Things:	A	survey,	Futur.	
Gener.	Comput.	Syst.	56	(2016)	684–700.	
doi:10.1016/j.future.2015.09.021.	

[26]	 I.	Stojmenovic,	Fog	computing:	A	cloud	to	
the	ground	support	for	smart	things	and	
machine-to-machine	networks,	in:	2014	
Australas.	Telecommun.	Networks	Appl.	
Conf.,	IEEE,	2014:	pp.	117–122.	
doi:10.1109/ATNAC.2014.7020884.	

[27]	 F.	Bonomi,	R.	Milito,	J.	Zhu,	S.	Addepalli,	
Fog	computing	and	its	role	in	the	internet	
of	things,	in:	Proc.	First	Ed.	MCC	Work.	
Mob.	Cloud	Comput.	-	MCC	’12,	ACM	
Press,	New	York,	New	York,	USA,	2012:	p.	
13.	doi:10.1145/2342509.2342513.	

[28]	 A.V.	Dastjerdi,	R.	Buyya,	Fog	Computing:	
Helping	the	Internet	of	Things	Realize	Its	
Potential,	Computer	(Long.	Beach.	Calif).	
49	(2016)	112–116.	
doi:10.1109/MC.2016.245.	

[29]	 M.	Aazam,	E.-N.	Huh,	Fog	Computing	and	
Smart	Gateway	Based	Communication	for	
Cloud	of	Things,	in:	2014	Int.	Conf.	Futur.	
Internet	Things	Cloud,	IEEE,	2014:	pp.	
464–470.	doi:10.1109/FiCloud.2014.83.	

[30]	 K.	Hong,	D.	Lillethun,	U.	Ramachandran,	B.	
Ottenwälder,	B.	Koldehofe,	Mobile	fog:	a	

programming	model	for	large-scale	
applications	on	the	internet	of	things,	in:	
Proc.	Second	ACM	SIGCOMM	Work.	Mob.	
Cloud	Comput.	-	MCC	’13,	ACM	Press,	
New	York,	New	York,	USA,	2013:	p.	15.	
doi:10.1145/2491266.2491270.	

[31]	 F.	Jalali,	K.	Hinton,	R.	Ayre,	T.	Alpcan,	R.S.	
Tucker,	Fog	Computing	May	Help	to	Save	
Energy	in	Cloud	Computing,	IEEE	J.	Sel.	
Areas	Commun.	34	(2016)	1728–1739.	
doi:10.1109/JSAC.2016.2545559.	

[32]	 R.	Mahmud,	R.	Kotagiri,	R.	Buyya,	Fog	
Computing:	A	Taxonomy,	Survey	and	
Future	Directions,	in:	2018:	pp.	103–130.	
doi:10.1007/978-981-10-5861-5_5.	

[33]	 S.K.	Datta,	C.	Bonnet,	N.	Nikaein,	An	IoT	
gateway	centric	architecture	to	provide	
novel	M2M	services,	in:	2014	IEEE	World	
Forum	Internet	Things,	IEEE,	2014:	pp.	
514–519.	doi:10.1109/WF-
IoT.2014.6803221.	

[34]	 S.F.	Ochoa,	G.	Fortino,	G.	Di	Fatta,	Cyber-
physical	systems,	internet	of	things	and	
big	data,	Futur.	Gener.	Comput.	Syst.	75	
(2017)	82–84.	
doi:10.1016/j.future.2017.05.040.	

[35]	 L.F.	Bittencourt,	M.M.	Lopes,	I.	Petri,	O.F.	
Rana,	Towards	Virtual	Machine	Migration	
in	Fog	Computing,	in:	2015	10th	Int.	Conf.	
P2P,	Parallel,	Grid,	Cloud	Internet	
Comput.,	IEEE,	2015:	pp.	1–8.	
doi:10.1109/3PGCIC.2015.85.	

[36]	 P.	Bellavista,	A.	Zanni,	Feasibility	of	Fog	
Computing	Deployment	based	on	Docker	
Containerization	over	RaspberryPi,	in:	
Proc.	18th	Int.	Conf.	Distrib.	Comput.	
Netw.	-	ICDCN	’17,	ACM	Press,	New	York,	
New	York,	USA,	2017:	pp.	1–10.	
doi:10.1145/3007748.3007777.	

[37]	 A.	Al-Fuqaha,	A.	Khreishah,	M.	Guizani,	A.	
Rayes,	M.	Mohammadi,	Toward	better	
horizontal	integration	among	IoT	services,	
IEEE	Commun.	Mag.	53	(2015)	72–79.	
doi:10.1109/MCOM.2015.7263375.	

[38]	 S.	Yi,	C.	Li,	Q.	Li,	A	Survey	of	Fog	
Computing: :	Concepts,	Applications	and	
Issues,	in:	Proc.	2015	Work.	Mob.	Big	
Data	-	Mobidata	’15,	ACM	Press,	New	
York,	New	York,	USA,	2015:	pp.	37–42.	
doi:10.1145/2757384.2757397.	

[39]	 J..	Zhang,	F.-Y..	c	Wang,	K..	Wang,	W.-H..	
Lin,	X..	Xu,	C..	Chen,	Data-driven	
intelligent	transportation	systems:	A	
survey,	IEEE	Trans.	Intell.	Transp.	Syst.	12	
(2011)	1624–1639.	
doi:10.1109/TITS.2011.2158001.	

[40]	 P.D.	Diamantoulakis,	V.M.	Kapinas,	G.K.	
Karagiannidis,	Big	Data	Analytics	for	
Dynamic	Energy	Management	in	Smart	
Grids,	Big	Data	Res.	2	(2015)	94–101.	
doi:10.1016/j.bdr.2015.03.003.	

[41]	 M.Q.	Raza,	A.	Khosravi,	A	review	on	
artificial	intelligence	based	load	demand	
forecasting	techniques	for	smart	grid	and	
buildings,	Renew.	Sustain.	Energy	Rev.	50	
(2015)	1352–1372.	
doi:10.1016/j.rser.2015.04.065.	

[42]	 K.	Zhou,	C.	Fu,	S.	Yang,	Big	data	driven	
smart	energy	management:	From	big	data	
to	big	insights,	Renew.	Sustain.	Energy	
Rev.	56	(2016)	215–225.	
doi:10.1016/j.rser.2015.11.050.	

[43]	 X.	Yu,	Y.	Xue,	Smart	Grids:	A	Cyber–
Physical	Systems	Perspective,	Proc.	IEEE.	
104	(2016)	1058–1070.	
doi:10.1109/JPROC.2015.2503119.	

[44]	 EU,	Framework	for	the	Deployment	of	
Intelligent	Transport	Systems	in	the	Field	
of	Road	Transport	and	for	Interfaces	with	
Other	Modes	of	Transport,	2010.	
http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?
uri=OJ:L:2010:207:0001:0013:EN:PDF.	

[45]	 G.	Dimitrakopoulos,	P.	Demestichas,	
Intelligent	Transportation	Systems:	
Systems	Based	on	Cognitive	Networking	
Principles	and	Management	Functionality,	
IEEE	Veh.	Technol.	Mag.	(2009)	77–84.	

[46]	 S.	Ezell,	Intelligent	Transportation	
Systems,	2010.	
https://www.itif.org/files/2010-1-27-
ITS_Leadership.pdf.	

[47]	 MINI	Plant	Oxford,	Assembly,	(n.d.).	
http://miniplantoxford.co.uk/production/
assembly.aspx.	

[48]	 A.	Kuss,	T.	Dietz,	F.	Spenrath,	A.	Verl,	
Automated	Planning	of	Robotic	MAG	
Welding	Based	on	Adaptive	Gap	Model,	
Procedia	CIRP.	62	(2017)	612–617.	

doi:10.1016/j.procir.2016.07.008.	
[49]	 T.M.	Mitchell,	The	discipline	of	machine	

learning,	Carnegie	Mellon	University,	
School	of	Computer	Science,	Machine	
Learning	Department,	2006.	

[50]	 C.M.	Bishop,	Pattern	Recognition	and	
Machine	Learning,	Springer,	New	York,	
New	York,	USA,	2006.	

[51]	 J.	Ferreira,	E.	Carvalho,	B.	V.	Ferreira,	C.	
de	Souza,	Y.	Suhara,	A.	Pentland,	G.	
Pessin,	Driver	behavior	profiling:	An	
investigation	with	different	smartphone	
sensors	and	machine	learning,	PLoS	One.	
12	(2017)	e0174959.	
doi:10.1371/journal.pone.0174959.	

[52]	 L.	Breinman,	Random	forests,	Mach.	
Learn.	45	(2001)	5–32.	doi:10.1186/1478-
7954-9-29.	

[53]	 Z.	Wang,	T.	Oates,	Encoding	Time	Series	
as	Images	for	Visual	Inspection	and	
Classification	Using	Tiled	Convolutional	
Neural	Networks,	Work.	Twenty-Ninth	
AAAI	Conf.	Artif.	Intell.	(2015)	40–46.	
http://www.aaai.org/ocs/index.php/WS/
AAAIW15/paper/view/10179.	

[54]	 Y.	Zheng,	Q.	Liu,	E.	Chen,	Y.	Ge,	J.L.	Zhao,	
Time	Series	Classification	Using	Multi-
Channels	Deep	Convolutional	Neural	
Networks,	Web-Age	Inf.	Manag.	SE	-	33.	
8485	(2014)	298–310.	doi:10.1007/978-3-
319-08010-9_33.	

[55]	 I.	Goodfellow,	Y.	Bengio,	A.	Courville,	
Deep	Learning,	MIT	Press,	2016.	

[56]	 L.	Deng,	D.	Yu,	Deep	Learning:	Methods	
and	Applications,	Found.	Trends®	Signal	
Process.	7	(2014)	197–387.	
doi:10.1561/2000000039.	

[57]	 V.	Drucker,	H.,	Burges,	C.	J.,	Kaufman,	L.,	
Smola,	A.	J.,	&	Vapnik,	Support	vector	
regression	machines,	in:	Adv.	Neural	Inf.	
Process.	Syst.,	1997:	pp.	155–161.	

[58]	 G.	Santafe,	Advances	on	Supervised	and	
Unsupervised	Learning	of	Bayesian	
Network	Models,	University	of	the	
Basque	Country,	2007.	
http://www.sc.ehu.es/ccwbayes/member
s/guzman/pdfs/guzmanTesis.pdf.	

[59]	 A.E.	Eiben,	J.E.	Smith,	Introduction	to	
Evolutionary	Computing,	Springer,	2003.	

[60]	 H.	Ishibuchi,	T.	Nakashima,	T.	Murata,	A	
fuzzy	classifier	system	that	generates	
fuzzy	if-then	rules	for	pattern	
classification	problems,	in:	Proc.	1995	
IEEE	Int.	Conf.	Evol.	Comput.,	IEEE,	1995:	
pp.	759–764.	
doi:10.1109/ICEC.1995.487481.	

[61]	 U.	Maulik,	S.	Bandyopadhyay,	Genetic	
algorithm-based	clustering	technique,	
Pattern	Recognit.	33	(2000)	1455–1465.	
doi:10.1016/S0031-3203(99)00137-5.	

[62]	 S.	Whiteson,	Evolutionary	Computation	
for	Reinforcement	Learning,	in:	2012:	pp.	
325–355.	doi:10.1007/978-3-642-27645-
3_10.	

[63]	 T.	Kohonen,	Essentials	of	the	self-
organizing	map,	Neural	Networks.	37	
(2013)	52–65.	
doi:10.1016/j.neunet.2012.09.018.	

[64]	 C.J.C.H.	Watkins,	P.	Dayan,	Q-learning,	
Mach.	Learn.	8	(1992)	279–292.	
doi:10.1007/BF00992698.	

[65]	 G.	Sideratos,	A.	Ikonomopoulos,	N.	
Hatziargyriou,	A	Committee	of	Machine	
Learning	Techniques	for	Load	Forecasting	
in	a	Smart	Grid	Environment,	Int.	J.	
Energy	Power.	4	(2015)	98.	
doi:10.14355/ijep.2015.04.016.	

[66]	 L.	Xiao,	W.	Shao,	C.	Wang,	K.	Zhang,	H.	Lu,	
Research	and	application	of	a	hybrid	
model	based	on	multi-objective	
optimization	for	electrical	load	
forecasting,	Appl.	Energy.	180	(2016)	
213–233.	
doi:10.1016/j.apenergy.2016.07.113.	

[67]	 W.	Yu,	D.	An,	D.	Griffith,	Q.	Yang,	G.	Xu,	
Towards	statistical	modeling	and	machine	
learning	based	energy	usage	forecasting	
in	smart	grid,	ACM	SIGAPP	Appl.	Comput.	
Rev.	15	(2015)	6–16.	
doi:10.1145/2753060.2753061.	

[68]	 C.	Guan,	P.B.	Luh,	L.D.	Michel,	Y.	Wang,	
P.B.	Friedland,	Very	Short-Term	Load	
Forecasting:	Wavelet	Neural	Networks	
With	Data	Pre-Filtering,	IEEE	Trans.	Power	
Syst.	28	(2013)	30–41.	
doi:10.1109/TPWRS.2012.2197639.	

[69]	 A.	Kusiak,	Haiyang	Zheng,	Zhe	Song,	
Short-Term	Prediction	of	Wind	Farm	

Power:	A	Data	Mining	Approach,	IEEE	
Trans.	Energy	Convers.	24	(2009)	125–136.	
doi:10.1109/TEC.2008.2006552.	

[70]	 K.Y.	Chan,	T.S.	Dillon,	J.	Singh,	E.	Chang,	
Neural-Network-Based	Models	for	Short-
Term	Traffic	Flow	Forecasting	Using	a	
Hybrid	Exponential	Smoothing	and	
Levenberg–Marquardt	Algorithm,	IEEE	
Trans.	Intell.	Transp.	Syst.	13	(2012)	644–
654.	doi:10.1109/TITS.2011.2174051.	

[71]	 P.	Zito,	Haibo	Chen,	M.C.	Bell,	Predicting	
Real-Time	Roadside	CO	and	CO2	
Concentrations	Using	Neural	Networks,	
IEEE	Trans.	Intell.	Transp.	Syst.	9	(2008)	
514–522.	doi:10.1109/TITS.2008.928259.	

[72]	 A.	Khosravi,	E.	Mazloumi,	S.	Nahavandi,	D.	
Creighton,	J.W.C.	Van	Lint,	Prediction	
intervals	to	account	for	uncertainties	in	
travel	time	prediction,	IEEE	Trans.	Intell.	
Transp.	Syst.	12	(2011)	537–547.	
doi:10.1109/TITS.2011.2106209.	

[73]	 J.W.C.	van	Lint,	Online	Learning	Solutions	
for	Freeway	Travel	Time	Prediction,	IEEE	
Trans.	Intell.	Transp.	Syst.	9	(2008)	38–47.	
doi:10.1109/TITS.2008.915649.	

[74]	 T.	Yin,	G.	Zhong,	J.	Zhang,	S.	He,	B.	Ran,	A	
prediction	model	of	bus	arrival	time	at	
stops	with	multi-routes,	Transp.	Res.	
Procedia.	25	(2017)	4623–4636.	
doi:10.1016/j.trpro.2017.05.381.	

[75]	 F.	Castaño,	G.	Beruvides,	R.	Haber,	A.	
Artuñedo,	Obstacle	Recognition	Based	on	
Machine	Learning	for	On-Chip	LiDAR	
Sensors	in	a	Cyber-Physical	System,	
Sensors.	17	(2017)	2109.	
doi:10.3390/s17092109.	

[76]	 Z.	Kim,	Robust	Lane	Detection	and	
Tracking	in	Challenging	Scenarios,	IEEE	
Trans.	Intell.	Transp.	Syst.	9	(2008)	16–26.	
doi:10.1109/TITS.2007.908582.	

[77]	 S.-J.	Shin,	J.	Woo,	S.	Rachuri,	Predictive	
Analytics	Model	for	Power	Consumption	
in	Manufacturing,	Procedia	CIRP.	15	
(2014)	153–158.	
doi:10.1016/j.procir.2014.06.036.	

[78]	 C.	Shen,	L.	Wang,	Q.	Li,	Optimization	of	
injection	molding	process	parameters	
using	combination	of	artificial	neural	
network	and	genetic	algorithm	method,	J.	

Mater.	Process.	Technol.	183	(2007)	412–
418.	
doi:10.1016/j.jmatprotec.2006.10.036.	

[79]	 A.	Lahouar,	J.	Ben	Hadj	Slama,	Random	
forests	model	for	one	day	ahead	load	
forecasting,	in:	IREC2015	Sixth	Int.	Renew.	
Energy	Congr.,	IEEE,	2015:	pp.	1–6.	
doi:10.1109/IREC.2015.7110975.	

[80]	 Jian	Zhou,	Zhaoqiang	Ge,	Shang	Gao,	Yanli	
Xu,	Fault	record	detection	with	random	
forests	in	data	center	of	large	power	grid,	
in:	2016	IEEE	PES	Asia-Pacific	Power	
Energy	Eng.	Conf.,	IEEE,	2016:	pp.	1641–
1645.	 doi:10.1109/APPEEC.2016.7779771.	

[81]	 D.	Wu,	C.	Jennings,	J.	Terpenny,	S.	
Kumara,	Cloud-based	machine	learning	
for	predictive	analytics:	Tool	wear	
prediction	in	milling,	in:	2016	IEEE	Int.	
Conf.	Big	Data	(Big	Data),	IEEE,	2016:	pp.	
2062–2069.	
doi:10.1109/BigData.2016.7840831.	

[82]	 D.	Gkorou,	T.	Hoogenboom,	A.	Ypma,	G.	
Tsirogiannis,	M.	Giollo,	D.	Sonntag,	G.	
Vinken,	R.	van	Haren,	R.J.	van	Wijk,	J.	Nije,	
Towards	Big	Data	Visualization	for	
Monitoring	and	Diagnostics	of	High	
Volume	Semiconductor	Manufacturing,	in:	
Proc.	Comput.	Front.	Conf.	ZZZ	-	CF’17,	
ACM	Press,	New	York,	New	York,	USA,	
2017:	pp.	338–342.	
doi:10.1145/3075564.3078883.	

[83]	 L.	Auret,	C.	Aldrich,	Unsupervised	Process	
Fault	Detection	with	Random	Forests,	Ind.	
Eng.	Chem.	Res.	49	(2010)	9184–9194.	
doi:10.1021/ie901975c.	

[84]	 F.	Oldewurtel,	A.	Ulbig,	A.	Parisio,	G.	
Andersson,	M.	Morari,	Reducing	peak	
electricity	demand	in	building	climate	
control	using	real-time	pricing	and	model	
predictive	control,	in:	49th	IEEE	Conf.	
Decis.	Control,	IEEE,	2010:	pp.	1927–1932.	
doi:10.1109/CDC.2010.5717458.	

[85]	 H.	Chao,	Efficient	pricing	and	investment	
in	electricity	markets	with	intermittent	
resources,	Energy	Policy.	39	(2011)	3945–
3953.	doi:10.1016/j.enpol.2011.01.010.	

[86]	 S.	Gupta,	R.	Kambli,	S.	Wagh,	F.	Kazi,	
Support-Vector-Machine-Based	Proactive	
Cascade	Prediction	in	Smart	Grid	Using	
Probabilistic	Framework,	IEEE	Trans.	Ind.	

Electron.	62	(2015)	2478–2486.	
doi:10.1109/TIE.2014.2361493.	

[87]	 W.Y.	Zhang,	W.-C.	Hong,	Y.	Dong,	G.	Tsai,	
J.-T.	Sung,	G.	Fan,	Application	of	SVR	with	
chaotic	GASA	algorithm	in	cyclic	electric	
load	forecasting,	Energy.	45	(2012)	850–
858.	doi:10.1016/j.energy.2012.07.006.	

[88]	 J.	Nagi,	A.M.	Mohammad,	K.S.	Yap,	S.K.	
Tiong,	S.K.	Ahmed,	Non-Technical	Loss	
analysis	for	detection	of	electricity	theft	
using	support	vector	machines,	in:	2008	
IEEE	2nd	Int.	Power	Energy	Conf.,	IEEE,	
2008:	pp.	907–912.	
doi:10.1109/PECON.2008.4762604.	

[89]	 A.H.	Nizar,	Z.Y.	Dong,	M.	Jalaluddin,	M.J.	
Raffles,	Load	Profiling	Method	in	
Detecting	non-Technical	Loss	Activities	in	
a	Power	Utility,	in:	2006	IEEE	Int.	Power	
Energy	Conf.,	IEEE,	2006:	pp.	82–87.	
doi:10.1109/PECON.2006.346624.	

[90]	 M.	Esmalifalak,	Nam	Tuan	Nguyen,	Rong	
Zheng,	Zhu	Han,	Detecting	stealthy	false	
data	injection	using	machine	learning	in	
smart	grid,	in:	2013	IEEE	Glob.	Commun.	
Conf.,	IEEE,	2013:	pp.	808–813.	
doi:10.1109/GLOCOM.2013.6831172.	

[91]	 A.A.	Albousefi,	H.	Ying,	D.	Filev,	F.	Syed,	
K.O.	Prakah-Asante,	F.	Tseng,	H.-H.	Yang,	
A	two-stage-training	support	vector	
machine	approach	to	predicting	
unintentional	vehicle	lane	departure,	J.	
Intell.	Transp.	Syst.	21	(2017)	41–51.	
doi:10.1080/15472450.2016.1196141.	

[92]	 A.	Ponz,	C.H.	Rodríguez-Garavito,	F.	
García,	P.	Lenz,	C.	Stiller,	J.M.	Armingol,	
Laser	Scanner	and	Camera	Fusion	for	
Automatic	Obstacle	Classification	in	ADAS	
Application,	in:	2015:	pp.	237–249.	
doi:10.1007/978-3-319-27753-0_13.	

[93]	 T.	Liu,	Y.	Yang,	G.-B.	Huang,	Y.K.	Yeo,	Z.	
Lin,	Driver	Distraction	Detection	Using	
Semi-Supervised	Machine	Learning,	IEEE	
Trans.	Intell.	Transp.	Syst.	17	(2016)	
1108–1120.	
doi:10.1109/TITS.2015.2496157.	

[94]	 R.P.	Ribeiro,	P.	Pereira,	J.	Gama,	
Sequential	anomalies:	a	study	in	the	
Railway	Industry,	Mach.	Learn.	105	(2016)	
127–153.	doi:10.1007/s10994-016-5584-
6.	

[95]	 S.	Moridpour,	T.	Anwar,	M.T.	Sadat,	E.	
Mazloumi,	A	genetic	algorithm-based	
support	vector	machine	for	bus	travel	
time	prediction,	in:	2015	Int.	Conf.	Transp.	
Inf.	Saf.,	IEEE,	2015:	pp.	264–270.	
doi:10.1109/ICTIS.2015.7232119.	

[96]	 G.A.	Susto,	A.	Schirru,	S.	Pampuri,	S.	
McLoone,	A.	Beghi,	Machine	Learning	for	
Predictive	Maintenance:	A	Multiple	
Classifier	Approach,	IEEE	Trans.	Ind.	
Informatics.	11	(2015)	812–820.	
doi:10.1109/TII.2014.2349359.	

[97]	 X.	Yao,	S.K.	Moon,	G.	Bi,	A	hybrid	machine	
learning	approach	for	additive	
manufacturing	design	feature	
recommendation,	Rapid	Prototyp.	J.	23	
(2017)	983–997.	doi:10.1108/RPJ-03-
2016-0041.	

[98]	 A.	Madureira,	J.M.	Santos,	S.	Gomes,	B.	
Cunha,	J.P.	Pereira,	I.	Pereira,	
Manufacturing	rush	orders	rescheduling:	
a	supervised	learning	approach,	in:	2014	
Sixth	World	Congr.	Nat.	Biol.	Inspired	
Comput.	(NaBIC	2014),	IEEE,	2014:	pp.	
299–304.	
doi:10.1109/NaBIC.2014.6921895.	

[99]	 T.	Wuest,	C.	Irgens,	K.-D.	Thoben,	An	
approach	to	monitoring	quality	in	
manufacturing	using	supervised	machine	
learning	on	product	state	data,	J.	Intell.	
Manuf.	25	(2014)	1167–1180.	
doi:10.1007/s10845-013-0761-y.	

[100]	 H.	Ma,	Y.	Wang,	K.	Wang,	Automatic	
detection	of	false	positive	RFID	readings	
using	machine	learning	algorithms,	Expert	
Syst.	Appl.	91	(2018)	442–451.	
doi:10.1016/j.eswa.2017.09.021.	

[101]	 D.J.	Cook,	A.S.	Crandall,	B.L.	Thomas,	N.C.	
Krishnan,	CASAS:	A	Smart	Home	in	a	Box,	
Computer	(Long.	Beach.	Calif).	46	(2013)	
62–69.	doi:10.1109/MC.2012.328.	

[102]	 N.C.	Krishnan,	D.J.	Cook,	Activity	
recognition	on	streaming	sensor	data,	
Pervasive	Mob.	Comput.	10	(2014)	138–
154.	doi:10.1016/j.pmcj.2012.07.003.	

[103]	 I.	Monedero,	F.	Biscarri,	C.	León,	J.I.	
Guerrero,	J.	Biscarri,	R.	Millán,	Detection	
of	frauds	and	other	non-technical	losses	
in	a	power	utility	using	Pearson	
coefficient,	Bayesian	networks	and	

decision	trees,	Int.	J.	Electr.	Power	Energy	
Syst.	34	(2012)	90–98.	
doi:10.1016/j.ijepes.2011.09.009.	

[104]	 Y.	Simmhan,	S.	Aman,	A.	Kumbhare,	R.	Liu,	
S.	Stevens,	Q.	Zhou,	V.	Prasanna,	Cloud-
Based	Software	Platform	for	Big	Data	
Analytics	in	Smart	Grids,	Comput.	Sci.	Eng.	
15	(2013)	38–47.	
doi:10.1109/MCSE.2013.39.	

[105]	 E.	Osaba,	E.	Onieva,	A.	Moreno,	P.	Lopez-
Garcia,	A.	Perallos,	P.G.	Bringas,	
Decentralised	intelligent	transport	system	
with	distributed	intelligence	based	on	
classification	techniques,	IET	Intell.	Transp.	
Syst.	10	(2016)	674–682.	doi:10.1049/iet-
its.2016.0047.	

[106]	 F.C.C.	Garcia,	A.E.	Retamar,	Towards	
building	a	bus	travel	time	prediction	
model	for	Metro	Manila,	in:	2016	IEEE	
Reg.	10	Conf.,	IEEE,	2016:	pp.	3805–3808.	
doi:10.1109/TENCON.2016.7848775.	

[107]	 T.P.	Vuong,	Cyber-physical	intrusion	
detection	for	robotic	vehicles,	University	
of	Greenwich,	2017.	
http://gala.gre.ac.uk/17445/7/Tuan	
Vuong	2017.pdf.	

[108]	 D.	Lieber,	M.	Stolpe,	B.	Konrad,	J.	Deuse,	
K.	Morik,	Quality	Prediction	in	Interlinked	
Manufacturing	Processes	based	on	
Supervised	&	Unsupervised	Machine	
Learning,	Procedia	CIRP.	7	(2013)	193–
198.	doi:10.1016/j.procir.2013.05.033.	

[109]	 V.	Sugumaran,	V.	Muralidharan,	K.I.	
Ramachandran,	Feature	selection	using	
Decision	Tree	and	classification	through	
Proximal	Support	Vector	Machine	for	
fault	diagnostics	of	roller	bearing,	Mech.	
Syst.	Signal	Process.	21	(2007)	930–942.	
doi:10.1016/j.ymssp.2006.05.004.	

[110]	 Y.	Liu,	S.	Jin,	Application	of	Bayesian	
networks	for	diagnostics	in	the	assembly	
process	by	considering	small	
measurement	data	sets,	Int.	J.	Adv.	
Manuf.	Technol.	65	(2013)	1229–1237.	
doi:10.1007/s00170-012-4252-7.	

[111]	 L.	Hao,	L.	Bian,	N.	Gebraeel,	J.	Shi,	
Residual	Life	Prediction	of	Multistage	
Manufacturing	Processes	With	
Interaction	Between	Tool	Wear	and	
Product	Quality	Degradation,	IEEE	Trans.	

Autom.	Sci.	Eng.	14	(2017)	1211–1224.	
doi:10.1109/TASE.2015.2513208.	

[112]	 S.	Nannapaneni,	S.	Mahadevan,	S.	Rachuri,	
Performance	evaluation	of	a	
manufacturing	process	under	uncertainty	
using	Bayesian	networks,	J.	Clean.	Prod.	
113	(2016)	947–959.	
doi:10.1016/j.jclepro.2015.12.003.	

[113]	 V.N.	Coelho,	I.M.	Coelho,	B.N.	Coelho,	
A.J.R.	Reis,	R.	Enayatifar,	M.J.F.	Souza,	F.G.	
Guimarães,	A	self-adaptive	evolutionary	
fuzzy	model	for	load	forecasting	problems	
on	smart	grid	environment,	Appl.	Energy.	
169	(2016)	567–584.	
doi:10.1016/j.apenergy.2016.02.045.	

[114]	 S.	Chakraborty,	T.	Senjyu,	A.	Yona,	A.Y.	
Saber,	T.	Funabashi,	Solving	economic	
load	dispatch	problem	with	valve-point	
effects	using	a	hybrid	quantum	mechanics	
inspired	particle	swarm	optimisation,	IET	
Gener.	Transm.	Distrib.	5	(2011)	1042.	
doi:10.1049/iet-gtd.2011.0038.	

[115]	 C.C.O.	Ramos,	A.N.	Souza,	G.	Chiachia,	A.X.	
Falcão,	J.P.	Papa,	A	novel	algorithm	for	
feature	selection	using	Harmony	Search	
and	its	application	for	non-technical	
losses	detection,	Comput.	Electr.	Eng.	37	
(2011)	886–894.	
doi:10.1016/j.compeleceng.2011.09.013.	

[116]	 P.	Ray,	D.P.	Mishra,	Support	vector	
machine	based	fault	classification	and	
location	of	a	long	transmission	line,	Eng.	
Sci.	Technol.	an	Int.	J.	19	(2016)	1368–
1380.	doi:10.1016/j.jestch.2016.04.001.	

[117]	 M.	Yuwono,	Y.	Qin,	J.	Zhou,	Y.	Guo,	B.G.	
Celler,	S.W.	Su,	Automatic	bearing	fault	
diagnosis	using	particle	swarm	clustering	
and	Hidden	Markov	Model,	Eng.	Appl.	
Artif.	Intell.	47	(2016)	88–100.	
doi:10.1016/j.engappai.2015.03.007.	

[118]	 T.	Navalertporn,	N.	V.	Afzulpurkar,	
Optimization	of	tile	manufacturing	
process	using	particle	swarm	optimization,	
Swarm	Evol.	Comput.	1	(2011)	97–109.	
doi:10.1016/j.swevo.2011.05.003.	

[119]	 D.	Li,	S.K.	Jayaweera,	Machine-Learning	
Aided	Optimal	Customer	Decisions	for	an	
Interactive	Smart	Grid,	IEEE	Syst.	J.	9	
(2015)	1529–1540.	
doi:10.1109/JSYST.2014.2334637.	

[120]	 A.H.	Tai,	W.-K.	Ching,	L.Y.	Chan,	Detection	
of	machine	failure:	Hidden	Markov	Model	
approach,	Comput.	Ind.	Eng.	57	(2009)	
608–619.	doi:10.1016/j.cie.2008.09.028.	

[121]	 J.	Zheng,	L.M.	Ni,	Modeling	
heterogeneous	routing	decisions	in	
trajectories	for	driving	experience	
learning,	in:	Proc.	2014	ACM	Int.	Jt.	Conf.	
Pervasive	Ubiquitous	Comput.	-	
UbiComp	’14	Adjun.,	ACM	Press,	New	
York,	New	York,	USA,	2014:	pp.	951–961.	
doi:10.1145/2632048.2632089.	

[122]	 E.	Mocanu,	P.H.	Nguyen,	M.	Gibescu,	W.L.	
Kling,	Deep	learning	for	estimating	
building	energy	consumption,	Sustain.	
Energy,	Grids	Networks.	6	(2016)	91–99.	
doi:10.1016/j.segan.2016.02.005.	

[123]	 Y.	Lv,	Y.	Duan,	W.	Kang,	Z.	Li,	F.-Y.	Wang,	
Traffic	Flow	Prediction	With	Big	Data:	A	
Deep	Learning	Approach,	IEEE	Trans.	
Intell.	Transp.	Syst.	(2014)	1–9.	
doi:10.1109/TITS.2014.2345663.	

[124]	 M.	Bojarski,	D.	Del	Testa,	D.	Dworakowski,	
B.	Firner,	B.	Flepp,	P.	Goyal,	L.D.	Jackel,	M.	
Monfort,	U.	Muller,	J.	Zhang,	X.	Zhang,	J.	
Zhao,	K.	Zieba,	End	to	End	Learning	for	
Self-Driving	Cars,	(2016).	
http://arxiv.org/abs/1604.07316.	

[125]	 Z.	Chen,	X.	Huang,	End-to-end	learning	for	
lane	keeping	of	self-driving	cars,	in:	2017	
IEEE	Intell.	Veh.	Symp.,	IEEE,	2017:	pp.	
1856–1860.	
doi:10.1109/IVS.2017.7995975.	

[126]	 A.	Taylor,	Anomaly-based	detection	of	
malicious	activity	in	in-vehicle	networks	
Anomaly-based	detection	of	malicious	
activity	in	in-vehicle	networks,	University	
of	Ottawa,	2017.	
https://www.google.co.uk/url?sa=t&rct=j
&q=&esrc=s&source=web&cd=2&cad=rja
&uact=8&ved=0ahUKEwi1-
cnir6XYAhVNY1AKHYY-
DPEQFgg2MAE&url=https%3A%2F%2Fruo
r.uottawa.ca%2Fbitstream%2F10393%2F
36120%2F3%2FTaylor_Adrian_2017_thesi
s.pdf&usg=AOvVaw1mk_GeMwTMT0Yn6
kUxiMK.	

[127]	 P.	Nicolas,	Time	Complexity:	Graph	and	
Machine	Learning	Algorithms,	(2015).	
http://www.scalaformachinelearning.com

/2015/11/time-complexity-in-machine-
learning.html.	

[128]	 J.	Su,	H.	Zhang,	A	Fast	Decision	Tree	
Learning	Algorithm,	21st	Natl.	Conf.	Artif.	
Intell.	-	Vol.	1.	5	(2006)	500–505.	

[129]	 K.	He,	J.	Sun,	Convolutional	Neural	
Networks	at	Constrained	Time	Cost,	in:	
IEEE	Conf.	Comput.	Vis.	Pattern	Recognit.,	
2015:	pp.	5353–5360.	
doi:10.1109/CVPR.2015.7299173.	

[130]	 L.	Bottou,	C.	Lin,	Support	Vector	Machine	
Solvers,	(2006).	

[131]	 G.	Louppen,	Understanding	Random	
Forest	from	theory	to	practice,	University	
of	Liège,	2014.	
https://arxiv.org/pdf/1407.7502.pdf.	

[132]	 D.G.	Roussinov,	H.	Chen,	A	Scalable	Self-
organizing	Map	Algorithm	for	Textual	
Classification:	A	Neural	Network	
Approach	to	Thesaurus	Generation,	
Commun.	Cogn.	Artif.	Intell.	Spring.	15	
(1998)	81–112.	

[133]	 S.	Koenig,	R.G.	Simmons,	Complexity	
Analysis	of	Real-Time	Reinforcement	
Learning,	Proc.	AAAI	Conf.	Artif.	Intell.	
(1993)	99–105.	

[134]	 D.	Simon,	Biogeography-Based	
Optimization,	IEEE	Trans.	Evol.	Comput.	
12	(2008)	702–713.	
doi:10.1109/TEVC.2008.919004.	

[135]	 J.H.	Korhonen,	P.	Parviainen,	Exact	
Learning	of	Bounded	Tree-width	Bayesian	
Networks,	in:	Proc.	16th	Int.	Conf.	AI	Stat.,	
2013:	pp.	370–378.	

[136]	 A.	Bhattacharya,	P.K.	Chattopadhyay,	
Biogeography-Based	Optimization	for	
Different	Economic	Load	Dispatch	
Problems,	IEEE	Trans.	Power	Syst.	25	
(2010)	1064–1077.	
doi:10.1109/TPWRS.2009.2034525.	

[137]	 V.	Losing,	B.	Hammer,	H.	Wersing,	
Incremental	on-line	learning:	A	review	
and	comparison	of	state	of	the	art	
algorithms,	Neurocomputing.	275	(2018)	
1261–1274.	
doi:10.1016/j.neucom.2017.06.084.	

[138]	 J.	Gama,	I.	Žliobaitė,	A.	Bifet,	M.	
Pechenizkiy,	A.	Bouchachia,	A	survey	on	
concept	drift	adaptation,	ACM	Comput.	

Surv.	46	(2014)	1–37.	
doi:10.1145/2523813.	

[139]	 A.	R.R,	D.	P.	R,	Methods	for	Incremental	
Learning :	A	Survey,	Int.	J.	Data	Min.	
Knowl.	Manag.	Process.	3	(2013)	119–125.	
doi:10.5121/ijdkp.2013.3408.	

[140]	 D.	Hadas,	G.	Yovel,	N.	Intrator,	Using	
unsupervised	incremental	learning	to	
cope	with	gradual	concept	drift,	Conn.	Sci.	
23	(2011)	65–83.	
doi:10.1080/09540091.2011.575929.	

[141]	 Nan-Ying	Liang,	Guang-Bin	Huang,	P.	
Saratchandran,	N.	Sundararajan,	A	Fast	
and	Accurate	Online	Sequential	Learning	
Algorithm	for	Feedforward	Networks,	
IEEE	Trans.	Neural	Networks.	17	(2006)	
1411–1423.	
doi:10.1109/TNN.2006.880583.	

[142]	 S.	Suresh,	K.	Dong,	H.J.	Kim,	A	sequential	
learning	algorithm	for	self-adaptive	
resource	allocation	network	classifier,	
Neurocomputing.	73	(2010)	3012–3019.	
doi:10.1016/j.neucom.2010.07.003.	

[143]	 H.T.	Huynh,	Y.	Won,	Regularized	online	
sequential	learning	algorithm	for	single-
hidden	layer	feedforward	neural	
networks,	Pattern	Recognit.	Lett.	32	
(2011)	1930–1935.	
doi:10.1016/j.patrec.2011.07.016.	

[144]	 L.	Guo,	J.	Hao,	M.	Liu,	An	incremental	
extreme	learning	machine	for	online	
sequential	learning	problems,	
Neurocomputing.	128	(2014)	50–58.	
doi:10.1016/j.neucom.2013.03.055.	

[145]	 J.R.	Quinlan,	Induction	of	decision	trees,	
Mach.	Learn.	1	(1986)	81–106.	
doi:10.1007/BF00116251.	

[146]	 P.E.	Utgoff,	Incremental	induction	of	
decision	trees,	Mach.	Learn.	4	(1989)	
161–186.	doi:10.1023/A:1022699900025.	

[147]	 D.	Kalles,	T.	Morris,	Efficient	incremental	
induction	of	decision	trees,	Mach.	Learn.	
24	(1996)	231–242.	
doi:10.1007/BF00058613.	

[148]	 P.	Domingos,	G.	Hulten,	Mining	high-
speed	data	streams,	in:	Proc.	Sixth	ACM	
SIGKDD	Int.	Conf.	Knowl.	Discov.	Data	Min.	
-	KDD	’00,	ACM	Press,	New	York,	New	
York,	USA,	2000:	pp.	71–80.	

doi:10.1145/347090.347107.	
[149]	 J.	Gama,	R.	Rocha,	P.	Medas,	Accurate	

decision	trees	for	mining	high-speed	data	
streams,	in:	Proc.	Ninth	ACM	SIGKDD	Int.	
Conf.	Knowl.	Discov.	Data	Min.	-	KDD	’03,	
ACM	Press,	New	York,	New	York,	USA,	
2003:	p.	523.	doi:10.1145/956750.956813.	

[150]	 B.	Pfahringer,	G.	Holmes,	R.	Kirkby,	New	
Options	for	Hoeffding	Trees,	in:	Proc.	
20th	Aust.	Jt.	Conf.	Adv.	Artif.	Intell.,	
Springer-Verlag,	Berlin,	Heidelberg,	2007:	
pp.	90–99.	
http://dl.acm.org/citation.cfm?id=178123
8.1781251.	

[151]	 L.	Rutkowski,	L.	Pietruczuk,	P.	Duda,	M.	
Jaworski,	Decision	Trees	for	Mining	Data	
Streams	Based	on	the	McDiarmid’s	Bound,	
IEEE	Trans.	Knowl.	Data	Eng.	25	(2013)	
1272–1279.	doi:10.1109/TKDE.2012.66.	

[152]	 L.	Rutkowski,	M.	Jaworski,	L.	Pietruczuk,	P.	
Duda,	The	CART	decision	tree	for	mining	
data	streams,	Inf.	Sci.	(Ny).	266	(2014)	1–
15.	doi:10.1016/j.ins.2013.12.060.	

[153]	 H.	Abdulsalam,	D.B.	Skillicorn,	P.	Martin,	
Streaming	Random	Forests,	in:	11th	Int.	
Database	Eng.	Appl.	Symp.	(IDEAS	2007),	
IEEE,	2007:	pp.	225–232.	
doi:10.1109/IDEAS.2007.4318108.	

[154]	 H.	Abdulsalam,	D.B.	Skillicorn,	P.	Martin,	
Classification	Using	Streaming	Random	
Forests,	IEEE	Trans.	Knowl.	Data	Eng.	23	
(2011)	22–36.	doi:10.1109/TKDE.2010.36.	

[155]	 A.	Saffari,	C.	Leistner,	J.	Santner,	M.	
Godec,	H.	Bischof,	On-line	Random	
Forests,	in:	2009	IEEE	12th	Int.	Conf.	
Comput.	Vis.	Work.	ICCV	Work.,	IEEE,	
2009:	pp.	1393–1400.	
doi:10.1109/ICCVW.2009.5457447.	

[156]	 M.	Denil,	D.	Matheson,	N.	De	Freitas,	
Consistency	of	Online	Random	Forests,	in:	
Int.	Conf.	Mach.	Learn.,	2013:	pp.	1256–
1264.	

[157]	 J.	Kivinen,	A.J.	Smola,	R.C.	Williamson,	
Online	Learning	with	Kernels,	IEEE	Trans.	
Signal	Process.	52	(2004)	2165–2176.	
doi:10.1109/TSP.2004.830991.	

[158]	 P.	Laskov,	C.	Gehl,	S.	Kr�ger,	K.-R.	
M�ller,	Incremental	Support	Vector	
Learning:	Analysis,	Implementation	and	

Applications,	J.	Mach.	Learn.	Res.	7	(2006)	
1909–1936.	

[159]	 M.	Karasuyama,	I.	Takeuchi,	Multiple	
Incremental	Decremental	Learning	of	
Support	Vector	Machines,	IEEE	Trans.	
Neural	Networks.	21	(2010)	1048–1059.	
doi:10.1109/TNN.2010.2048039.	

[160]	 B.	Gu,	V.S.	Sheng,	K.Y.	Tay,	W.	Romano,	S.	
Li,	Incremental	Support	Vector	Learning	
for	Ordinal	Regression,	IEEE	Trans.	Neural	
Networks	Learn.	Syst.	26	(2015)	1403–
1416.	doi:10.1109/TNNLS.2014.2342533.	

[161]	 B.	Tang,	Z.	Chen,	G.	Hefferman,	S.	Pei,	T.	
Wei,	H.	He,	Q.	Yang,	Incorporating	
Intelligence	in	Fog	Computing	for	Big	Data	
Analysis	in	Smart	Cities,	IEEE	Trans.	Ind.	
Informatics.	13	(2017)	2140–2150.	
doi:10.1109/TII.2017.2679740.	

[162]	 P.	Garcia	Lopez,	A.	Montresor,	D.	Epema,	
A.	Datta,	T.	Higashino,	A.	Iamnitchi,	M.	
Barcellos,	P.	Felber,	E.	Riviere,	Edge-
centric	Computing:	Vision	and	Challenges,	
ACM	SIGCOMM	Comput.	Commun.	Rev.	
45	(2015)	37–42.	
doi:10.1145/2831347.2831354.	

[163]	 L.	Gu,	D.	Zeng,	S.	Guo,	A.	Barnawi,	Y.	
Xiang,	Cost	Efficient	Resource	
Management	in	Fog	Computing	
Supported	Medical	Cyber-Physical	System,	
IEEE	Trans.	Emerg.	Top.	Comput.	5	(2017)	
108–119.	
doi:10.1109/TETC.2015.2508382.	

[164]	 B.	Xu,	L.	Xu,	H.	Cai,	L.	Jiang,	Y.	Luo,	Y.	Gu,	
The	design	of	an	m-Health	monitoring	
system	based	on	a	cloud	computing	
platform,	Enterp.	Inf.	Syst.	11	(2017)	17–
36.	doi:10.1080/17517575.2015.1053416.	

[165]	 Q.	Tu,	J.F.	Lu,	B.	Yuan,	J.B.	Tang,	J.Y.	Yang,	
Density-based	hierarchical	clustering	for	
streaming	data,	Pattern	Recognit.	Lett.	33	
(2012)	641–645.	
doi:10.1016/j.patrec.2011.11.022.	

[166]	 M.S.	Goodwin,	M.	Haghighi,	Q.	Tang,	M.	
Akcakaya,	D.	Erdogmus,	S.	Intille,	Moving	
towards	a	real-time	system	for	
automatically	recognizing	stereotypical	
motor	movements	in	individuals	on	the	
autism	spectrum	using	wireless	
accelerometry,	in:	Proc.	2014	ACM	Int.	Jt.	
Conf.	Pervasive	Ubiquitous	Comput.	-	

UbiComp	’14	Adjun.,	ACM	Press,	New	
York,	New	York,	USA,	2014:	pp.	861–872.	
doi:10.1145/2632048.2632096.	

[167]	 N.	Verba,	K.-M.	Chao,	A.	James,	D.	
Goldsmith,	X.	Fei,	S.-D.	Stan,	Platform	as	a	
service	gateway	for	the	Fog	of	Things,	Adv.	
Eng.	Informatics.	33	(2017)	243–257.	
doi:10.1016/j.aei.2016.11.003.	

[168]	 I.	Stoica,	D.	Song,	R.A.	Popa,	D.	Patterson,	
M.W.	Mahoney,	R.	Katz,	A.D.	Joseph,	M.	
Jordan,	J.M.	Hellerstein,	J.	Gonzalez,	K.	
Goldberg,	A.	Ghodsi,	D.	Culler,	P.	Abbeel,	
A	Berkeley	View	of	Systems	Challenges	
for	AI,	2017.	

http://www2.eecs.berkeley.edu/Pubs/Te
chRpts/2017/EECS-2017-159.html.	

[169]	 G.	Baryannis,	K.	Kritikos,	D.	Plexousakis,	A	
specification-based	QoS-aware	design	
framework	for	service-based	applications,	
Serv.	Oriented	Comput.	Appl.	11	(2017)	
301–314.	doi:10.1007/s11761-017-0210-
4.	

[170]	 W.	Wang,	K.	Lee,	D.	Murray,	A	global	
generic	architecture	for	the	future	
Internet	of	Things,	Serv.	Oriented	Comput.	
Appl.	11	(2017)	329–344.	
doi:10.1007/s11761-017-0213-1.	

	
	

