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Abstract— Increased adoption of Fog Computing concepts into 

Cyber Physical Systems (CPS) is a driving force for implementing 

Industry 4.0. The modern industrial environment focuses on 

providing a flexible factory floor that suits the needs of modern 

manufacturing through the reduction of downtimes, 

reconfiguration times, adoption of new technologies and the 

increase of its production capabilities and rates. Fog Computing 

through CPS aims to provide a flexible orchestration and 

management platform that can meet the needs of this emerging 

industry model. 

Proposals on Fog Computing platform and Software Defined 

Networks (SDN) for Industry allow for resource virtualization and 

access throughout the system enabling large composite application 

systems to be deployed on multiple nodes. The increase of 

reliability, redundancy and runtime parameters as well as the 

reduction of costs in such systems are of key interest to Industry 

and researchers as well. The development of optimization 

algorithms and methods is made difficult by the complexity of such 

systems and the lack of real-world data on fog systems resulting in 

algorithms that are not being designed for real world scenarios. 

We propose a set of use-case scenarios based on our Industrial 

partner that we analyze to determine the graph based parameters 

of the system that allows us to scale and generate a more realistic 

testing scenario for future optimization attempts as well as 

determine the nature of such systems in comparison to other 

networks types. To show the differences between these scenarios 

and our real-world use-case we have selected a set of key graph 

characteristics based on which we analyze and compare the 

resulting graphs from the systems.   

Keywords—Fog Computing; CPS; Industry 4.0; Graph 

Analysis;  

I.  INTRODUCTION  

Cyber Physical Systems (CPS) implementation in Industrial 
Environments has emerged from an increased use of wireless 
medium based sensor and actuator technologies that have 
increasingly larger processing and communication capabilities. 
Together with concepts from Internet of Things (IoT) the 
requirements of Industry 4.0 were established. Proposals such as 
the framework in [1] and the business process centric approach 
in [2] that aim to answer these requirements deploy sensor and 
actuator networks together with orchestration protocols to 
provide a flexible industrial environment that can improve 

production parameters, overview and the flexibility of factory 
floors. 

Concepts from Fog Computing propose that a further 
increase in reliability and reduction of latencies as well as an 
increased functionality can be achieved by migrating tasks and 
applications from cloud containers to local nodes and gateways. 
Service oriented approaches such as in [3] as well as 
Asynchronous messaging based ones as in [4] propose an 
abstracted view of devices and resources as well as the 
possibility of cluster or region level resource access from 
application or services. 

 Allowing applications to access resources and devices from 
any node on the network allows for application migration in the 
system which can be used to further improve runtime parameters 
and reduce costs and latencies as proposed in [5]. Migration 
poses a placement problem for Fog Systems which can be 
decomposed into an estimation and modeling problem as 
presented in [6] and a management problem as in [7]. The 
management problem can consider single shot systems with 
finite tasks being deployed, executed and having results returned 
in the case of more traditional Fog Computing approaches. For 
Industry and CPS systems we consider highly connected and 
continuously running systems that use resources and access 
devices from a varying set of gateways and locations.  

We propose graph based CPS system analysis approach 
based on key parameters that allows for a more rigorous 
connectivity, reliability and categorization of IoT Fog Systems. 
Furthermore, the resulting generation or replication parameters 
allow for scaling and large systems to be generated based on 
small use cases which aid in optimization and load balancing 
algorithm development and testing. Finally, we analyze a set of 
use-case scenarios developed for workstations available at our 
industrial partner, based on which we determine average 
parameters and categorization of such systems. Using this data 
we compare virtual systems generation methods based on 
random, pseudo-random and measured parameter  to analyze 
how accurately they reflect real systems and how they differ. 

II. OPTIMIZATION AND ANALYSIS CHALLENGES  

Optimization in IoT systems is made difficult by two main 
factors. The first is with respect to the complexity of these 
systems where migrating an application, service or resource 



leads to the alteration of the connection topology as well as the 
locally available resources the effect of which is difficult to 
model or estimate. The second hindrance in developing 
optimization solution for Fog computing is the lack of real-life 
information on data-sets, use-cases, application sizes, 
processing requirements, message rates and their impact on the 
deployed nodes. Most available use-cases such as in [8] show a 
high-level view of agile manufacturing systems which can’t be 
used for optimization purposes. The state of the art solutions for 
this as in [9,10,11,12] are the proposal of example applications 
and use cases on top of which they build their optimization 
methods. The drawback of these approaches is that there is no 
guarantee that the proposed system parameters or use-cases 
resemble real-life solutions, reducing the utility of the proposed 
models and algorithms. 

The solutions look at different aspects of optimization. The 
solution in [9] is a clustering and stage based method based on a 
simple delay model between components, while in [12] a simple 
topology reduction is attempted. The proposals in [10,11] show 
a more elaborate application and delay model considering 
processing delay as changing through the deployment locality as 
well as considering several different connection delay types. 
Although these models are extensive, the constants, rates and 
values that change through migrating are assumed instead of 
measured or deduced. This may cause certain optimization 
approaches to seem more advantageous than others as well as 
leading to inaccurate models. 

When considering highly connected complex systems, the 
common approach is the use of graphs to model the connections 
between entities. This has been done to model WWW 
connection as in [13] as well as to optimize Wireless Sensor 
Networks (WSN) as in [14] for connection reliability, zero 
single node failures and other parameters. Increasingly there are 
attempts at using these methods on Fog Systems as in [15] where 
a tree based system is used or in [16] where graph repartitioning 
methods are proposed. These proposals have the same 
drawbacks of lacking real deployment data on which to test their 
algorithms on real-world systems where the clustering factor, 
connectivity and distribution of nodes might vary greatly. 
Finally, these solutions don’t consider the existence of a physical 
and virtual connection set where the physical one looks at where 
application, devices and resources are deployed or orchestrated, 
while the virtual one only looks at which components interact 
with each other. This view would allow Node mapping between 
one graph to another which is the core of the Fog Computing 
placement problem. 

III. USE CASE DESCRIPTION 

The presented use cases are based on the 4 physical 
workstations and proposed automation and control systems that 
are in concurrence with the requirements of our partner and 
those presented in Industry 4.0. 

A. Physical Systems  

1) Metrology Workstation (Dimention Measurements) 
The Dimension Testing Metrology station contains a CMM 

machine, alongside some smaller measurement devices, and a 
environment monitoring station for accurate temperature and 

humidity control which is essential for accurate measurements 
as well as a monitoring screen and a parts organizing station. 

This workstation is designed to measure tolerances on 
finished components as well as bending and torsion. The key 
factors here are linked to quality assurance, environmental 
monitoring and Energy Control and monitoring. 

2) Metrology Workstation (Metallurgy) 
The Metallurgy Metrology workstation contains a Hot Mold 

Machine, a Polishing Controller, Digital Microscopes, a part 
organizer and monitor.  

This workstation is used to take weld pieces, mount them 
into plastic molds, polish and analyze these for integrity. The 
key factors here are part monitoring, tests logging and quality 
control. 

3) Metrology Workstation (Stress Testing) 
The Stress testing workstation contains a Compression 

testing, Burst testing and Stretch testing instruments as well as 
parts organizer and monitor. 

This station is used to test the integrity of welded tubes under 
pressure through the burst tests, as well as component 
characteristics through the compression and stretch or pull tests. 
The key components are regarding parts monitoring and tests 
logging together with energy monitoring and quality control. 

4) Assembly Line  
The Assembly line contains several ABB Robot arms with 

2D vision capabilities together with welder units, a conveyor 
belt with position sensors, controls and bar code readers, an 
input and output part organizer, safety proximity laser curtains 
and emergency stop buttons. 

The assembly line is used to weld and assemble components 
going through the line based on their part numbers. The key 
components are part monitoring as well as quality control 
through the metrology stations, safety and energy monitoring 
and control. 

B. Application Use-Cases  

The design of the application use-cases are based on the 
existing hardware and sensor environment as well as guidelines 
presented in [17]. The main purpose of these systems is to map 
flow based energy control, part monitoring access and 
environmental control on top of existing hardware with a 
realistic composite application approach. Each scenario has a 
different approach to the topology of the connections. The part 
Logging system is designed to be a more connected design while 
the energy monitoring and access control scenarios are more 
hierarchical or resemble fractal and tree based graphs. 

1) Part Logging and Flow Monitoring 
This system is designed to monitor the progress of parts 

through the assembly and metrology environments as well as 
gather data on parts production rate and use per environment as 
well as receive controls from the energy optimizer on where to 
assign parts. 

The virtual connections of the system can be seen in fig. 1 
where each component or application is shown with its 
respective cloud, storage, local access and device connections. 



We can see from the graph that the applications are highly 
connected between each other while the devices usually belong 
to one controller/ orchestrator or reader with no direct machine 
to machine (M2M) communication between devices. 

The use-case contains a main parts flow monitor and a status 
monitor connected to a local component for each room which 
then communicates with each individual machine type controller 
and reader. We have a local repository for parts status 
monitoring for each workstation as well as local access. Finally, 
there is a cloud monitoring connection for saving data and 
advanced analysis. 

 

Fig. 1. Parts and Flow Monitoring subsystem 

2) Energy Monitoring and Control 
The system is designed to monitor the energy use of devices 

and machines for each workstation and the factory as well. It 
also controls the power supply of machines based on parts flow 
and existing optimization scenarios. These parameters are 
shown on displays and saved to a cloud source. 

 

Fig. 2. Energy Monitoring, Optimization and Control 

 The virtual connections of the system can be seen in fig 2. 
We can see from the diagram that the connections in this 
scenario are much less clustered and more hierarchical than in 
the previous scenario especially for the left half, which is the 
control region, while the right is the monitoring and optimization 
part. 

 The presented use case contains a cloud connected main 
power controller connected to local controllers that have local 
access and that in hand orchestrate the individual devices. This 
component is linked with the Energy Optimizer which is 
connected to the flow monitor and Main Energy Monitor. 

  The main monitor is linked with local monitors that save 
data to local storage and show info on local displays while 
saving data for further analysis on a common Cloud Energy 
Monitor endpoint. 

3) Access, Safety and Environment Control 
This system is designed to take care of controlling and 

logging access on machine and rooms as well as controlling 
safety and environmental variables inside the rooms. Cloud 
logging and control as well as local access and displays are 
connected to these components. 

The graph of these connections can be seen in fig. 3 where 
we can see that the graph has a similar structure to the one in fig. 
2, but containing more local access points and a much more 
hierarchical system which is designed for layered safety in the 
case of access and security. 

 

Fig. 3. Acces, Safety and Environmental Monitoring and Control 

This scenario contains a main access manager that controls 
the room access, parts access and machine access modules that 
in hand orchestrate the room modules and their devices. The 
access manager is linked to the safety controller which in hand 
is linked to the environmental controller to initiate safety 
protocols if needed. The safety controller is linked to individual 
room components that in hand control the safety devices and 
sensors available. The environmental components orchestrate 
ventilation, temperature and humidity control through factory 
level components. It also has specialized units for the high 

 

 

 



precision environment control requirements of the Dimension 
measurement workstation which increases the number of 
sensors and splits the humidity and temperature as well as the 
ventilation. 

4) Combined System 

 

Fig. 4. Combined System 

The combined system seen in fig. 4 looks at connecting the 
separate systems for a fully functioning factory floor. This is 
done by linking certain main components in these systems 
through a layered architecture design.  

The main connected components that are the part flow 
controller with the energy use optimization that connects to the 
machine part controller which then relates to the Safety 
Controller and the Access Manager. 

IV. ANALYSIS PARAMETERS 

When considering the analysis of IoT systems, there are 
several parameters that need to be examined that may be 
interesting for two reasons. The first reason is for replication and 
scaling of these systems when testing how optimization 
algorithms perform with larger datasets. The second reason is to 
identify characteristics of these systems that can be used to better 
select and create new optimization approaches. Finally, as 
proposed in [18] these parameters can be used to calculate or 
estimate latencies, reliability and redundancies of entities and 
the system. For the analysis, we consider the system as a graph 
𝐺 = (𝑉, 𝐸) where 𝑉 denoted the vertexes, nodes denote the 
applications, storages, cloud entities, and regional access points 
while 𝐸 denotes the Edges or connections between these. 

We consider  𝑉𝑖 ∈ 𝑉𝑘 ∈ 𝑉 where k denotes the type of Node 
and i denotes the number or id of the node and 𝑉𝑘  denotes the set 
of all nodes of the same type. For the edges, we denote 𝐸𝑖,𝑗 ∈ 𝐸 

where i and j are the id of the connected Nodes and 𝐸𝑖,𝑗  denotes 

the edge itself. For the edges, we consider 𝐸𝑖,𝑗 =  𝐸𝑗,𝑖  due to the 

undirected and unweighted nature of our graph. 

A. Replication Parameters 

The replication parameters are simple properties of the 
graphs that look at key parameters we can use to replicate the 
structure of the graph to allow replication and scaling of certain 
use-cases.  

1) Application Resource Use 
This parameter looks at what is the average number and 

distribution of device, region, storage and cloud connections 
from applications. We denote the resource use of an Application 

by  𝑅𝐴𝑝𝑝
𝑇𝑦𝑝𝑒

 where Type is the resource type and App is the 

application id. Equation (1) defines this resource use as a sum of 
all connections of an application to a type of device. 

𝑅𝐴𝑝𝑝
𝑇𝑦𝑝𝑒

=  ∑ 𝑉𝑖 ∈ 𝑉𝑇𝑦𝑝𝑒
𝐸𝐴𝑝𝑝,𝑖

𝑖
  (1)

2) Clustering of Applications 
This component looks at how certain applications group 

together into clusters and what is the average size and number 
of these clusters and how interconnected they are. We define a 
cluster 𝐶𝑙𝑢𝑠𝑡𝑖 where Application 𝑉𝑖 ∈ 𝐶𝑙𝑢𝑠𝑡𝑖 as defined by a 
clustering algorithm like K-Means[19] or DBSCAN[19]. 

3) Connection Locality 
This factor looks at what are the chances of one application 

connecting to resources and devices from the same gateway and 
how many external resources and applications it uses. We are 
interested in the distribution of these types of connections. We 
define three types of locality {Local, Cluster, External} where 

𝑉𝑖  ∈  Loc 𝑘
𝐿𝑜𝑐𝑎𝑙 so that all elements 𝑉𝑖 are on the same gateway, 

𝑉𝑗  ∈  Loc 𝑘
𝐶𝑙𝑢𝑠𝑡𝑒𝑟 so that all elements 𝑉𝑗 are part of the same 

Cluster and 𝑉𝑙  ∈  Loc 𝑘
𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 so that: 

Loc 𝑘
𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = 𝑉 − (Loc 𝑘

𝐿𝑜𝑐𝑎𝑙 ∪ Loc 𝑘
𝐶𝑙𝑢𝑠𝑡𝑒𝑟) (2) 

4) Inter-App communication 
This parameter looks at the average number and distribution 

of connections between applications deployed on the system. 
Together with clustering and locality, this component helps 
create a more realistic environment. We consider the 

connections of an Application by  𝐶𝐴𝑝𝑝
𝐴𝑟𝑒𝑎

 where Area denotes the 

region to which the application connects to which can be local 
or cluster level. Equation (3) defines these connections as a sum 
of all connections from each region coming or going to the 
application. 

   𝐶𝐴𝑝𝑝
𝐴𝑟𝑒𝑎 =  ∑ 𝑉𝑖 ∈ Loc 𝑘

𝐴𝑟𝑒𝑎 , where 𝑉𝐴𝑝𝑝 ∈ Loc 𝑘
𝐴𝑟𝑒𝑎 

𝐸𝑖𝐴𝑝𝑝

𝑖

𝐶𝐴𝑝𝑝
𝐸𝑥𝑡 =  ∑ 𝑉𝑖 ∈ Loc 𝑘

𝐸𝑥𝑡 , where 𝑉𝐴𝑝𝑝 ∈ Loc 𝑘
𝐸𝑥𝑡 

𝐸𝑖𝐴𝑝𝑝

𝑖

 (3) 

B. Graph Parameters 

The graph parameters are designed to show certain 
characteristics of these systems that can be translated to 
parameters of interest, such as reliability, latencies, clustering 
and interconnectivity. These characteristics are used in [20] to 

 



analyze a varying range of systems such as the World-wide web, 
social networks, citation interconnectivity and others.  

1) Connectivity 
Connectivity checks if there is a route route(𝑖, 𝑗) from any 

node 𝑉𝑖 in the graph to any other node 𝑉𝑗 in the system. After 

verifying connectivity, we look at how many distinct connected 
graphs we can find in our system. This parameter aids in 
clustering of these connected graphs as well as shows separate 
subsystems. Our use-cases are all connected graphs so this 
parameter, while important in the analysis, in our case is 
overlooked when discussing results.  

2) Average Path Length and Graph Diameter 
Average path lengths look at what is the average distance 

between two nodes while the graph diameter looks at the 
maximum distance. These parameters can be used to determine 
simple average and maximum latencies and hops within a 
network while comparing them to node and vertex counts can 
help us determine QoS parameters. The minimum distance from 
node 𝑉𝑖 in the graph to any node 𝑉𝑗 can be ca computed through 

the Dijkstra’s algorithms and is denoted with 𝑟𝑜𝑢𝑡𝑒𝑀𝑖𝑛(𝑖, 𝑗)  
while the average path in a system is defined as in (4) and the 
diameter or maximum shortest route is defined in (5) 

𝐴𝑉𝐺𝑅𝑜𝑢𝑡𝑒 =
∑ ∑ 𝑟𝑜𝑢𝑡𝑒𝑀𝑖𝑛(𝑖,𝑗) ,𝑖≠𝑗𝑉

𝑗
𝑉
𝑖

𝑠𝑖𝑧𝑒(𝑉)×(𝑠𝑖𝑧𝑒(𝑉)−1)
 (4) 

𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = max
𝑉𝑖 ∈ 𝑉

(max
𝑉𝑗 ∈ 𝑉

𝑟𝑜𝑢𝑡𝑒𝑀𝑖𝑛(𝑖, 𝑗)) , 𝑖 ≠ 𝑗 (5) 

3) Clustering and Clustering Coeficient 

The clustering coefficient looks at the average number of 

triangles 𝑇𝑟𝑖(𝑉𝑖), or three node pairs with each node being a 

member of a system. This number is divided by the total number 

of possible triangles, adjusting for the size of the graph. The 

sum of these values is the Clustering Coefficient (CCF) of the 

graph as can be seen in (6). This information can be used to 

determine how tightly coupled a cluster is. This parameter 

could be useful in determining the optimization of subsystems 

using divide and conquer techniques in optimization, especially 

latency optimization. 

𝐶𝐶𝐹 = ∑
𝑇𝑟𝑖(𝑉𝑖)

𝑠𝑖𝑧𝑒(𝑉)×(𝑠𝑖𝑧𝑒(𝑉)−1)

𝑉
𝑖   (6) 

4) Graph Degree Distribution 
The graph degree distribution (GDD) looks at how many 

nodes have a certain number of connections in a system 
compared to the maximum possible number of connections. The 
number of nodes that have a certain degree can be calculated 
based on (7) where k is the edge count. 

𝐺𝐷𝐷[𝑘] = ∑ (∑ 𝐸𝑖,𝑗 = 𝑘𝐸
𝑗

𝑉
𝑖 )  (7) 

 This gives a view on how the connections differ between 
systems and gives us the main comparison factor when 
categorizing our system as well as verifying generated systems. 

5) Graph Betweenness Centrality Distribution 
The graph betweenness centrality (GBC) of a node is 

calculated by counting the number of shortest paths 
𝑟𝑜𝑢𝑡𝑒𝑀𝑖𝑛(𝑖, 𝑗) that contain a node and compare it to the 
maximum and minimum values present in the system. Our 
implementation looks at all the paths whose length is equal to 
the shortest one. The equation (8) shows how the centrality of 
one node is calculated.  

𝐺𝐷𝐶(𝑉𝑖) = ∑ ∑ 𝑉𝑖 ∈ 𝑟𝑜𝑢𝑡𝑒𝑀𝑖𝑛(𝑗, 𝑙)𝑉
𝑙

𝑉
𝑗 , 𝑖 ≠ 𝑗, 𝑙 (8)

   

The distribution looks at how many nodes have these values 
between a certain range. This parameter is key in determining 
high importance nodes in the system as well as critical single 
points of failure. This characteristic is also important when 
comparing systems and verifying our generated graphs. 

C. Network based Categorization 

There are several network types based on their connection 
typology as suggested in [20], each having their real world 
equivalent and their set of attributes. We analyze our use-cases 
and compare them to the behavior of known models such as 
random-graphs, Markow graphs, non-scalable networks, small-
world models, Barabas-Albert and other growth models. 

With each network having its own characteristics, they 
require different approaches when certain optimization or 
analysis attempts are made such as clustering and single point of 
failure rerouting. 

The analysis and categorization approximation of our system 
will allow for model specific method to be applied which may 
reduce run-times and reduce the diminishing returns we see with 
similar systems, such as in [21]. 

V. RESULTS AND COMPARISONS 

A. Replication Data Analysis 

The data analysis for the 4 virtual scenarios from the 
application resource use and locality point of view can be seen 
in Table I. broken down to device, storage, cloud and local 
interfaces and computed through the equation in (2). Each 
component has a local and external factor which looks at the 
locality of these connections with the local being the gateway 
hosting most resources while the external represents other 
gateways. 

The connections between application are described in Table 
II. Where they are broken down to local connections, cluster 
connections and external connections based on (3) and (4). 
These are important when designing systems when considering 
approaches that focus on connections remapping SDN based 
router rewiring and other similar methods.  

The clustered connections refer to the clusters in fig. 5 and 
looks at all the connections that are not to the same Gateway but 
are in the same cluster, while the external ones look at all 
connections to external gateways not on the cluster while the 
total shows all the connections. 



TABLE I.  RESOURCE USE PA4RAMETERS 

Type Prop. 

Scenario 

Energy  Parts and Flow 

Loca

. 

Ext 
b. 

Tota

l 

Loca

. 

Ext 
b. 

Tota

l 

Device 

Min 0 0 0 0 0 0 

Max 7 0 7 2 0 2 

Avg 2.87 0.0 2.87 1.25 0.0 1.25 

Cloud 

Min 0 0 0 0 0 0 

Max 1 1 1 1 1 1 

Avg 0.12 0.18 0.31 0.04 0.04 0.08 

Storag

e 

Min 0 0 0 0 0 0 

Max 1 0 1 1 0 1 

Avg 0.25 0.0 0.25 0.16 0.0 0.16 

Local 

Access 

Min 0 0 0 0 0 0 

Max 1 0 1 1 1 2 

Avg 0.25 0.0 0.25 0.2 0.08 0.29 

 

Access and Sec. Combined System 

Loca

. 

Ext 
b. 

Tota

l 

Loca

. 

Ext 
b. 

Tota

l 

Device 

Min 0 0 0 0 0 0 

Max 8 1 8 8 1 8 

Avg 2.94 0.05 3.0 2.3 0.01 2.32 

Cloud 

Min 0 0 0 0 0 0 

Max 1 0 1 1 1 1 

Avg 0.05 0.0 0.05 0.07 0.07 0.14 

Storag

e 

Min 0 0 0 0 0 0 

Max 1 0 1 1 0 1 

Avg 0.11 0.0 0.11 0.17 0.0 0.17 

Local 

Access 

Min 0 0 0 0 0 0 

Max 2 0 2 2 2 2 

Avg 0.38 0.0 0.38 0.26 0.05 0.32 

a. Loc-Belonging to Local Gateway 

b. Ext-Belonging to External Gateways 

Determining the number and size of the clusters for the 
analysis that was used for the app data in Table II. was done 
using a Density-Based Clustering Scan (DBSCAN) on the 
graphs. 

TABLE II.  APPLICATION PARAMETERS 

Property 

Parameters 

Energy 

Local Cluster External  Total 

Min 0 0 0 2 

Max 4 6 1 8 

Average 1.375 1.25 0.125 2.75 

 Parts and Flow 

Min 0 0 0 2 

Max 5 11 2 15 

Average 2.0 1.5 0.33 3.83 

 Access and Security 

Min 0 0 0 1 

Max 6 4 1 8 

Average 1.66 0.55 0.11 2.33 

 Combined System 

Min 0 0 0 1 

Max 6 14 3 15 

Average 1.64 1.21 0.32 3.17 

 

The configuration of the scan requires a minimum number 
of points for a cluster which for us is 8 and an epsilon which is 
a maximum distance between two peers which in our graph is 1. 
The minimum points value is determined by the structure of the 

graph. A more highly connected graph would require higher 
values to return distinct clusters rather than one big cluster. 

 

Fig. 5. DBSCAN Clusters 

The resulting clusters can be seen in fig. 5 where (a) is the 
Parts and Flow Monitoring system, (b) is the Access Safety and 
Environmental Control and monitoring subsystem, (c) is the 
Energy Monitoring Optimization and Control subsystem and (d) 
is the Combined System. Individual application clusters are 
coloured the same and applications that are not part of any 
cluster are colored white. 

This clustering method made for an average cluster size of 
7.42, a maximum of 22 and minimum of 1. The method resulted 
in an average of 2.25 applications not being assigned a cluster. 
We can see that it works well in (d) and (b) where the density of 
nodes is more uniform and the results are weaker in (a) where 
the tightly coupled nature of applications results in one big 
cluster. In (c) due to the varying density we see that the top part 
of the graph is well clustered while on the bottom it identifies 
two small clusters and two unassigned nodes.   

B. Network Analysis 

The subsystems are analyzed based on the parameters in 
section IV. B. where the connectivity path length and diameter 
are the more basic properties of the system. For our tests, all the 
systems are made up of connected graphs, but this test would 
allow a fast clustering and easier group based optimization in 
cases such as the combined system if there were no connections 
between subsystems. The average diameter is 7 hops, while the 
average path length is 4.15. The maximum dimeter is in the 
combined system with 9 as well as the highest average path 
length of 5.23.  We can see that diameter and average path length 
(APL) increase with the size of the cluster and are reduced with 
the increase of clustering as in (c) with a Clustering Coefficient 

 



(CCF) of 0.01 having an APL of 3.84 and the more tightly 
clustered (a) with a CCF of 0.09 has an APL of 3.29. 

We looked at the CCF of the applications on not just systems 
but also that of the subgraphs. The average CCF of the systems 
is 0.0425 varying between 0.016 and 0.09. If we consider the 
clusters by themselves the average CCF of clusters that have a 
size larger than 2 is 0.208 with values between 0.09 and 0.46. 

 

Fig. 6. Graph Degree Distribution of Systems 

The Graph Degree Distribution of the systems can be seen in 
fig. 6. The number of nodes displayed is relative to the maximum 
number of nodes to allow a comparison between the graphs. For 
the systems, the highest node count values were at 1 
connections, which is due to the device and resource links which 
are usually used by one application. The maximum values for 
these are 58 for access (5.b), 37 for parts monitoring (5.a), 56 for 
Energy (5.c) and 150 for the combined system (5.d). The highest 
number of edges are on the combined system with 18 and the 
second is on the Parts monitoring with 17. Every Node has at 
least one connection as the connectivity of the graphs show as 
well. 

The Graph Betweenness of the systems is shown in fig. 7. 
The centrality value is a relative value to the maximum available 
on the system which is scaled to account for network size 
differences. The relative node count is scaled to the max values 
as well.  

 

Fig. 7. Graph Betweenness Distribution of Systems 

The node in (d) with the highest absolute centrality has a 
value of 40745 possible shortest paths crossing this node. This 
high number is also due to our implementation of the algorithm 
where we calculate the minimum distance between two nodes 
and consider all paths of the same lengths. This values are 3763 

for the Energy Monitoring, 4012 for Access Control and 3886 
for Parts Monitoring. The devices and resources often have a 
value of 0 residing at the edge of the network, not providing 
connection between any two components. 

Based on the betweenness data as well as the graph degree 
distribution and structure of the system we can show some 
similarities with existing models. The Access Control and 
Energy Monitoring Systems have similar structures and the data 
in fig. 6 and 7 show that they have similar properties in structure 
to hierarchical and fractal networks with certain outliers and 
density variations. A closer look at these systems shows that 
their distribution and betweennness, especially that of the 
Access Control are like a Barabási-Albert model with an initial 
degree, m0=1. The Parts Monitoring system has a different 
architecture with similar properties to a Random Graph when we 
look at the applications connections and the lack of clustering, 
as well as the outliers in fig 5. and fig 6. If we look at the 
Combined system, the plotted data as well as its structure 
suggest that it has similar attributes to the Random Network that 
models the World Wide Web (WWW), having clusters form and 
a varied type of connections. 

C. Replication Analysiss 

When looking at the parameters used to generate use cases 
we can consider certain properties of interest. The increased 
adoption of connection locality and clustering can be seen in fig 
8. Part (a) shows a completely random system with just the node 
numbers and average connection data being used. Part (b) adds 
connections types, distribution and locality, while part (c) adds 
the remaining factor of clustering. 

 

Fig. 8. Replicated Systems 

We can see from the data in fig. 8 that as we adopt more 
parameters the systems resemble more those presented in fig.5. 
The system in (b) is similar to the Parts Monitoring use-case with 
the exception that devices are more interconnected due to the 
lack of locality data. System (c) contain all considered 

 

 

 



parameters and is like the Combined use-case and the Energy 
Monitoring one. If we consider even more realistic systems, we 
can devise the generation of Random Networks or Barabási-
Albert models as the basis of the connection. 

VI. CONCLUSIONS AND FUTURE WORK 

Graph based analysis and optimization of IoT and CPS 
Systems are key tools in improving the latency, reliability and 
other QoS parameters of such systems as well as allowing for a 
better integration and optimal use of the technology in Industry. 
This is needed to fulfill the QoS requirements of Industry 4.0. 

This paper presents a set of Industry based use-case 
scenarios as well as an overlaying application systems. Using 
these systems, we chose and analyze key replication and analysis 
parameters that can be linked with QoS characteristics.  

The experimental analysis show that different systems have 
a varying set of parameters and architectures while a compound 
system may mimic behaviors of Random Network Models. The 
replications tests show how replication systems and use-case 
architecture similarities are improved by considering our 
proposed parameter. 

Future work will look at using these parameters to aid in 
rerouting the graphs to improve latencies as well as connecting 
the physical and virtual systems to aid in the placement problem. 
Finally, we will look at system requirements to achieve certain 
reliability parameters, removing single points of failures and 
other improvements to the QoS qualities of the system. 

ACKNOWLEDGMENT  

The authors would like to thank our partners, especially Dr. 
Zahid Usman at the Institute for Advanced manufacturing and 
Engineering (AME) with collaboration with Unipart 
Manufacturing Group (UMG) for their support with developing 
the use cases and allowing our team to survey their factory floor. 

REFERENCES 

[1] Wang, Shiyong, et al. "Towards smart factory for industry 4.0: a self-
organized multi-agent system with big data based feedback and 
coordination." Computer Networks 101 (2016): 158-168. 

[2] Saldivar, Alfredo Alan Flores, et al. "Industry 4.0 with cyber-physical 
integration: A design and manufacture perspective." Automation and 
computing (icac), 2015 21st international conference on. IEEE, 2015 

[3] Vogler, Michael, et al. "DIANE-dynamic IoT application deployment." 
Mobile Services (MS), 2015 IEEE International Conference on. IEEE, 
2015. 

[4] Nandor Verba, Kuo-Ming Chao, Anne James, Daniel Goldsmith, Xiang 
Fei, Sergiu-Dan Stan, Platform as a service gateway for the Fog of Things, 
Advanced Engineering Informatics, ISSN 1474-0346 

[5] Sarkar, Subhadeep, Subarna Chatterjee, and Sudip Misra. "Assessment of 
the suitability of fog computing in the context of internet of things." IEEE 
Transactions on Cloud Computing (2015). 

[6] Aazam, Mohammad, et al. "IoT Resource Estimation Challenges and 
Modeling in Fog." Fog Computing in the Internet of Things. Springer 
International Publishing, 2018. 17-31. 

[7] Delicato, Flávia C., Paulo F. Pires, and Thais Batista. "The Resource 
Management Challenge in IoT." Resource Management for Internet of 
Things. Springer International Publishing, 2017. 7-18. 

[8] Scheuermann, Constantin, Stephan Verclas, and Bernd Bruegge. "Agile 
factory-an example of an industry 4.0 manufacturing process." Cyber-
Physical Systems, Networks, and Applications (CPSNA), 2015 IEEE 3rd 
International Conference on. IEEE, 2015. 

[9] Oueis, Jessica, Emilio Calvanese Strinati, and Sergio Barbarossa. "The 
fog balancing: Load distribution for small cell cloud computing." 
Vehicular Technology Conference (VTC Spring), 2015 IEEE 81st. IEEE, 
2015. 

[10] Deng, Ruilong, et al. "Optimal workload allocation in fog-cloud 
computing toward balanced delay and power consumption." IEEE 
Internet of Things Journal 3.6 (2016): 1171-1181. 

[11] Zeng, Deze, et al. "Joint optimization of task scheduling and image 
placement in fog computing supported software-defined embedded 
system." IEEE Transactions on Computers 65.12 (2016): 3702-3712. 

[12] Vogler, Michael, et al. "Optimizing Elastic IoT Application 
Deployments." IEEE Transactions on Services Computing (2016) 

[13] Kleinberg, Jon, et al. "The web as a graph: measurements, models, and 
methods." Computing and combinatorics (1999): 1-17. 

[14] Savazzi, Stefano, Vittorio Rampa, and Umberto Spagnolini. "Wireless 
cloud networks for the factory of things: connectivity modeling and layout 
design." IEEE Internet of Things Journal 1.2 (2014): 180-195. 

[15] Jingtao, Su, et al. "Steiner tree based optimal resource caching scheme in 
fog computing." China Communications 12.8 (2015): 161-168. 

[16] Ningning, Song, et al. "Fog computing dynamic load balancing 
mechanism based on graph repartitioning." China Communications 13.3 
(2016): 156-164. 

[17] Lee, Jay, Behrad Bagheri, and Hung-An Kao. "A cyber-physical systems 
architecture for industry 4.0-based manufacturing systems." 
Manufacturing Letters 3 (2015): 18-23. 

[18] Voutyras, Orfefs, et al. "Social monitoring and social analysis in internet 
of things virtual networks." Intelligence in Next Generation Networks 
(ICIN), 2015 18th International Conference on. IEEE, 2015. 

[19] Xu, Rui, and Donald Wunsch. "Survey of clustering algorithms." IEEE 
Transactions on neural networks 16.3 (2005): 645-678. 

[20] Newman, Mark EJ. "The structure and function of complex networks." 
SIAM review 45.2 (2003): 167-256. 

[21] Heller, Brandon, Rob Sherwood, and Nick McKeown. "The controller 
placement problem." Proceedings of the first workshop on Hot topics in 
software defined networks. ACM, 2012. 

 


