
Modelling Industry 4.0 based Fog Computing environments for

Application analysis and deployment

Nandor Verbaa,∗, Kuo-Ming Chaoa, Jacek Lewandowskia, Nazaraf Shaha, Anne Jamesb,
Feng Tianc

aFaculty of Engineering, Environment and Computing, Coventry University, Coventry, United Kingdom
bDepartment of Computing and Technology, Nottingham Trent University, Nottingham,United Kingdom

cSystems Engineering Institute,Xi’an Jiaotong University,Xi’an, China

Abstract

The extension of the Cloud to the Edge of the network through Fog Computing can have
a significant impact on the reliability and latencies of deployed applications. Recent papers
have suggested a shift from VM and Container based deployments to a shared environment
among applications to better utilize resources. Unfortunately, the existing deployment and
optimization methods pay little attention to developing and identifying complete models to
such systems which may cause large inaccuracies between simulated and physical run-time
parameters. Existing models do not account for application interdependence or the locality of
application resources which causes extra communication and processing delays. This paper
addresses these issues by carrying out experiments in both cloud and edge systems with
various scales and applications. It analyses the outcomes to derive a new reference model
with data driven parameter formulations and representations to help understand the effect
of migration on these systems. As a result, we can have a more complete characterization of
the fog environment. This, together with tailored optimization methods than can handle the
heterogeneity and scale of the fog can improve the overall system run-time parameters and
improve constraint satisfaction. An Industry 4.0 based case study with different scenarios
was used to analyze and validate the effectiveness of the proposed model. Tests were deployed
on physical and virtual environments with different scales. The advantages of the model
based optimization methods were validated in real physical environments. Based on these
tests, we have found that our model is 90% accurate on load and delay predictions for
application deployments in both cloud and edge.

Keywords: Cloud Computing, Fog Computing, Application Model, Migration

1. Introduction

The concept of Industry 4.0 provides new means of state of the art IT and manufac-
turing technologies integration through cybernetics, in order to advance automation of the

∗Corresponding author
Email address: verban@coventry.ac.uk (Nandor Verba)

Preprint submitted to Future Generation Computer Systems November 11, 2018

manufacturing systems and help to improve product quality, production efficiency, condition
monitoring and decision making [1, 2]. Within this concept, machines become connected
with humans through computer systems to work in a coordinated way to automate data
acquisition, sharing and exchange among the physical and virtual worlds.

The wide spread availability and affordability of sensors and wireless networks and the
accessibility of high speed Internet make real-time multiple parameters monitoring and con-
trol of manufacturing process possible in a way that was not possible before [3]. This leads
to a great number of sensors being deployed to physical machines which in turn generates
a large volume of data that requires computationally intensive analysis and interpretation
for decision-making purposes. The resulting decisions, whether made by human or software,
often require to be transformed to control signals for actuators to operate the machine in the
physical world. This then creates a loopback to the sensor system as new sets of data are
collected and sent back for further analysis, reflecting changing machine states over time.

This type of system based on Cyber-Physical System (CPS) is a facilitator for realising
the concepts of Industry 4.0. It enables computational algorithms and physical components
to interact with each other through real-time monitoring and control to improve productivity
[4, 5]. Yet, as stated in [6] traditional servers with limited capacities may not be able to cope
with the new challenges in terms of scalability and complexity of such systems. In turn, the
cloud with Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as
a Service (SaaS) provides a promising integrated solution [7, 8] to address these challenges.

However, the cost of using cloud services and the latency between the edges of the
network and the cloud could hinder its application to time critical applications. Furthermore,
due to health and safety issues, some machines cannot be operated remotely and can only
be operated within particular boundaries at the premises [9]. Besides, in some cases the
control software and the machine are bundled together due to security, license and driver
requirements, so it cannot be run on the cloud or other machines. On the other hand, the
computational power or other resources in the controllers may have spare capacity to process
additional tasks. The study of assigning these existing extra resources to time sensitive tasks
and overloaded computer systems becomes an interesting alternative to cloud processing
[10, 11]. Such systems as part of a network infrastructure could efficiently deal with front
line demands [12].

The fog environment is an extension of the traditional cloud to the edge of the network
including both cloud and edge resources. In Cloud computing environments, we consider
the physical machines to have mostly homogeneous builds with network latencies inside
clusters small enough that the deployed location of applications is not considered. In Fog
environments, we consider locality to be an important issue, due to the heterogeneous build
of nodes, the higher communication latencies inside a wireless network and the physical lock-
in of device resources. These differences between Fog and Cloud approaches introduce the
need for a new workload descriptor for a PaaS based Fog. Furthermore, in CPS systems we
need to consider the importance of device to application communication. These require the
formulation of a new Application and Gateway Model as well as new optimization approaches
that can address the differences between these systems.

So far, only limited numbers of optimisation and load balancing approaches such as [13]

2

have been proposed in the context of fog computing and CPS. The existing approaches [14],
however, focus on the design of optimisation methods using different simulated parameters
such as workload, power consumption and virtual machine distribution. These approaches
also lack physical environment testing, only consider theoretical formulas for delay and
processing that can only be implemented with full knowledge of the applications and the
systems that is not always possible. There are few studies [15] on application properties
such as coupling nature between devices/drivers and controller/gateway. Such properties
can lead to extra communication latency, depending on distance of device to gateway. The
existing approaches [14] are mainly interested in overall or average workload balancing with-
out considering individual message response time, which can be crucial for CPS.

The main contribution of this proposed paper is a new reference model with data driver
profiling and parameter formulation. This model allows us to evaluate the load and delay
of applications on our systems and also estimate the effect of changes and migration on
these systems. We consider the Load and Delay components as Reliability, Energy use and
Costs can be derived from the system load and messaging components. The model is sup-
ported by the workload profiles obtained from the experiments to increase its applicability.
To accommodate this model, we propose the the Reliability Optimization (RO), Delay Op-
timization (DO) and Constrained Delay Optimization (ConstDO) functions and compare
their performance. We evaluate these methods on our platform focusing on how well they
improve overall delays, reliability and reduce constraint violation through both heuristic and
deterministic optimization methods. We assess our models through the precision of their
predictions in both single, bundled and migrated deployments. The objective functions are
assessed based on how well they improve the app delays, gateway reliability and reduce the
constraint violations for each gateway.

1.1. Scenario

A fog computer in this paper is a gateway, part of a local cluster network, which is re-
sponsible for managing a job shop including a set of machines, sensors and software systems.
The gateways, as a self-contained low cost computer system have limited computational re-
sources and consume less energy than the cloud or servers, so they are deployed to the sites
close to the endpoints/edges in a large scale distributed control system or CPS [16, 17]. The
data generated by the machines and sensors, can be aggregated, compiled and analysed in
the local fog computing cluster, rather than in the cloud, thus reducing bandwidth and de-
creasing the response/delay time. The fog computing architecture could provide an effective
and efficient solution for large data-generation and computational-resource-requiring time-
sensitive IoT/CPS applications [10, 18, 19, 20]. In such a fog environment, the non-time
sensitive requests, which do not require real-time responses, can still be processed in the
cloud, while the edge can respond to the urgent events triggered by machines or sensors that
it monitors and controls. Similar architectures have been previously adopted to meet the
time-constraint requirements of different applications [18, 21].

Consider the example in Fig. 1 based on use-case scenarios presented in [22]. Here, gate-
ways monitor temperature and vibration in several CNC drilling machines with sensors in a
job shop, and operate them accordingly. The data, which requires substantial computational

3

Figure 1: Deployment Scenario

resources to process, is sent to the cloud for analysis of machine conditions for maintenance
and production performance. The data analytic tool may identify some time-sensitive con-
ditions in some machines that need to be monitored closely and delegates the corresponding
gateway to carry out the task. The gateway checks the indicators in real-time to examine
if the current temperature and vibration rates collected from the sensors are greater than
the predefined thresholds. If yes, the gateway triggers an instant warning and the machine
stops.

In the initial scenario, the gateways and cloud can meet these requirements. But then
a new set of machines (M5 and M6) are introduced to the job shop to increase production
capacities. Once new machines are in operation, the allocated gateway (Gateway 1) cannot
cope with these extra tasks and its processing delay time increases to a value that violates
the applications constraint. To maintain efficiency, an optimisation method is applied, which
decides to migrate application A4 to Gateway2 so that the real-time constraints are met,
and that the delays of the system are reduced.

2. Background

Several CPS clouds have been proposed to enhance the functionalities and alleviate some
barriers in CPS development [8]. However, latency is one of the inherent challenges in cloud
computing, and this issue limits its use in time-sensitive applications. CPSs often work in
a dynamic environment having a mixture of urgent, unexpected, and periodic events with
hard and soft real-time constraints. This means the cloud approach may be inadequate for
CPSs [23].

The core concept behind Fog Computing optimization is to improve efficiency of resource
utilization thrughout the system. Load and Delay optimization as suggested in [24] is

4

imperative for time-sensitive CPS applications and has become an important field of research
for managing resources in Fog environments. The use of OSGI and similar resource sharing
platforms for application deployment compared to Container and VM based solutions offers
new possibilities but also creates challenges due to increased interdependence.

2.1. Related Work

Various resource management strategies and algorithms have been studied for decades
in a variety of scenarios and it is well understood area in general distributed systems and
cloud computing. However recent years have witnessed that researchers are moving their
focus towards load balancing optimisation for cloud-fog systems. The key question in load
balancing optimisation is how to allocate jobs on various machines so that each receives its
fair share of resources to make progress while providing good performance [25].

The studies conducted by [26] and [27] provided comprehensive survey of various tech-
niques for load balancing optimisation for cloud computing. The load balancing optimisation
mechanisms used in managing resources in the cloud computing can be broadly divided into
virtual machine (VM) based, QoS, and energy etc.. Hu et. al. [28] presented an algorithm
for load balancing optimisation of VM resources by using a genetic algorithm. Their pro-
posed algorithm attempts to reduce migration cost of VMs using historical data and current
state of the system. Zhao et.al [29] presents the design and implementation of an algorithm
that employs the Pareto dominance theory and simulated annealing to achieve a long-term
efficient power saving and load balancing optimization. Dhinesh et. al. [24] proposed an
algorithm to achieve load balancing across VMs in order to maximise and balance the priori-
ties of tasks so that the amount of waiting time of the tasks is minimal [4]. A task scheduling
algorithm for load balancing optimisation based on QoS, proposed in [30], computes the pri-
ority of tasks based on some specific attributes and evaluates the completion time of each
task and then schedules each task onto a resource, which can complete the task according
to the task priority. In [31] the authors propose a new load balancing optimisation method
that uses Particle Swarm Optimization to balance system load by transferring tasks from
an over-loaded VM to less loaded one.

Through application of various algorithms, these approaches revolve around optimal task
distribution on various VMs or VM migration to achieve effective load balancing optimisa-
tion. The underlying characteristic of these algorithms requires their customisation to be
applicable in fog computing settings.

The fog computing model extends the cloud load balancing problem from cloud resources
to include edge device resources. The cloud load balancing optimisation methods cannot
be applied in fog computing due to the fundamental difference between these computing
models. The existing cloud optimisation methods for load balancing have shortcomings in
terms of system hierarchy and load forecasting, which cannot be applied to the dynamic
and P2P architecture of fog computing [32]. The fog computing dynamic load balancing
optimisation mechanism provided in [32], through graph partitioning and clustering, assigns
tasks to VMs according to the resource requirements of the tasks. Our proposed research,
on the other hand, focuses on application migration.

5

In [10] a framework has been proposed to investigate the trade-off between power con-
sumption and delay in the cloud-fog environment. In contrast our proposed method focuses
on fog subsystem load balancing, considering task assignment on various gateways and ser-
vice migration.

Furthermore, Verma et. al. [33] proposed a load balancing optimisation algorithm, which
uses a data replication technique for maintaining data in fog networks with an attempt
to reduce overall dependency on big data centers. The approach does not consider quick
response to emergency messages, which is at the heart of our proposed approach.

Application latency in fog computing has been addressed by VM migration [34]. Their
proposed approach focuses on allocation of VM to each mobile user, and migrates these VMs
based on an objective function to optimise the result for both service providers and service
consumers. Unlike ours, their approach assumes the availability of sufficient resources for
hosting virtual machines and does not consider device limitations and service level migration.

In [35] an architecture is proposed to integrate fog computing and SDN (Software Defined
Network) to IoV (Internet of Vehicle) to improve the latency of sensitive services. This
approach is highly domain dependent and uses particle swarm optimisation to decrease
service latency.

Table 1: Features of Fog Models and Algorithms

Article
Task

Oriented
Migration

VM
Migration

Driver
Coupling

Message
Routing

Ningning et al. [32] X – – – –
Bittencout et al. [34] – – X – –
Deng et al. [10] X – – – –
Verma et al. [33] X – – – –
He et al. [35] X – – – –
Our method X X – X X

The approaches for load balancing optimisation in fog computing, discussed here, do not
consider the characteristics of the application and work on a common assumption, that all
control and analysis applications are placed on all fog nodes. This assumption cannot be
true for fog nodes with limited resource capacity.

Our proposed optimisation algorithm builds on extant heuristic load balancing optimi-
sation approaches and performs load balancing optimisation through application migration,
tasks assignment, emergency messages, heterogeneity of nodes and tight coupling of soft-
ware drivers and sensors. The gateways/edge devices used in our application have limited
resources and they have tendency to get overloaded quickly compared to cloud resources,
which makes it imperative to have proactive optimisation mechanisms for load balancing
to safeguard time-critical applications. Table 1 provides the comparison of the features
of the extant fog computing algorithms for load balancing optimisation and our proposed
algorithm. The parameter task orientation means that the load balancing optimisation al-
gorithm operates on tasks to balance the load on various nodes. Application migration

6

and VM migration indicates that load balancing optimisation algorithm operates on service
migration or VM migration to optimise load balancing.

Some sensor devices are tightly coupled with software drivers installed in gateways and
the message still gets routed through the associated driver in the event of service migration.
This in fact results in increased message paths. Driver coupling is not relevant to VM
migration, where the whole VM gets migrated. Message routing through the original path
is relevant to the application, where there is tight driver coupling and messages must be
routed through specific drivers no matter where the application is deployed.

3. Platform Description

In this section, we describe our Fog of Things platform that is compliant with the Fog
Computing paradigms and requirements presented in [36]. This platform supports the
paradigms of Fog of Things by virtualizing devices and treating them as resources while
providing a platform for application deployment and migration through message translation
and routing.

3.1. Fog of Things Gateway Platform

The Apache Karaf based Fog of Things Gateway that we proposed in [36] represents a
PaaS approach to device orchestration and resource use at the edge of the network. Fog
Computing paradigm considers processing, networking and storage as resources as in Cloud
computing but extends these to the Edge of the network. This allows for the movement
of tasks from the cloud down to the edge of the network and back based on requirements.
Our platform adds to this paradigm by considering connected devices as resources of the
gateway that are made available to applications through a messaging level virtualization.
The device, storage, cloud, region and other resources request are translated to allow for
protocol agnostic communication with the applications as well as migration. This virtualiza-
tion layer allows the apps to have a uniform view of all available resources regardless of their
location and protocol. The same virtualization can be found in the application layer, where
messages to applications that reside on other gateways are translated and brokered through
the messaging system giving the applications the illusion of one big virtual environment.

Modular application deployment, protocol agnostic messaging together with multi-cloud
tenancy, or multiple clouds having access to one gateway, allows the gateway to better
represent the horizontal integration requirements of Industry 4.0 [6] by enabling applications
from multiple providers to interact, forming composite services, as well as allowing data to
be sent and received from multiple cloud providers that may offer a varying set of services
for data processing, device monitoring or control.

3.2. Migration and Message Routing on the Platform

The message routing on the gateway is the backbone of the protocol agnostic messaging
for drivers as well as the mechanism we use for the migration of applications between gate-
ways. Migrated applications need to maintain their full functionality, being able to access

7

data in storage and all connected devices while being able to communicate with peers in the
region, cloud and other services on the gateway.

The migration process requires all messages going from and to the application to be
routed to the new host gateway. This gives the app the illusion of still being on the same
gateway, without needing to reconfigure or rewrite its code.

The messaging service uses federated connections to forward messages between peers.
The connections between gateways by default are in a star topology that allows each gateway
to access each other directly, reducing latencies and hops but increasing overhead on larger
systems. Other topologies can be designed per application environments.

Figure 2: Migration

An example of how this routing is done can be seen in Fig. 2 where Application 2 is
moved from the cloud VM to the gateway, this changes the run-time characteristics of the
Application, the new environment having different latencies, different load and processing
capabilities.

An application is migrated by deleting it or stopping it on the host gateway, re-configuring
the existing routes of the application to be sent to the new host, adding the routes on the
new host to the application container and then finally deploying and starting the application
in the new hosts container. This is done through the configuration file of the application.

3.3. Application and Gateway Monitoring

The monitoring on the gateway is done by two components. The first is inside the
application container and monitors all application messages, even inter-app messages as
well as the total CPU usage of the applications threads. This component sends a message
to the gateway monitor which looks at a wider range of parameters but takes a more general

8

look at messages. The second component creates a summary file which is saved to the
database periodically.

The monitor in the application container is able to retrieve information on messages
sent to and from each application to any drivers, cloud connections, regions and resources.
Furthermore, it reads information on the CPU usage of every application. The gateway
monitor has a more general view of the messaging as it shows all messages routed from all
components without information on individual users/applications. This monitor can also
give information on individual application storage use, gateway load, RAM use and CPU
usage on the system. The load is adjusted to the processor count of the platform.

3.4. Cloud Control, Migration and Optimization

The gateways are configured to work with a centralized control system, where they receive
management commands through configuration files, which contain all aspects of migration,
deployment and clustering.

For the deployment optimization, we use a centralized control policy that allows the
cloud to analyse the monitoring data from the gateways and deploy changes on required
systems. This is done to decrease their impact on the platform itself.

The triggering policy for the optimization in the testing environment is a manual one,
while the system would support scheduled triggering as well as parameter based triggering,
where we look at certain key parameters and trigger the optimization if they cross certain
values. Another method is gateway event based, where the gateway notifies the cloud of any
events that modify the runtime parameters such as added or modified device, region and
cloud connections.

4. Application and Gateway Models

The application model attempts to estimate the functioning parameters of an application
based on the limited information we have on them to make estimation and optimization
possible and estimate its effects. The model attempts to calculate the load of the application
and its connected devices on the gateway which is used to estimate the effects of migration.
To be able to measure the total delay of the device messages we use test drivers that allow
us to send messages to the application container at a constant rate and measure the actual
return time of messages. The processing delay is measured by the application itself. We do
not consider the delay between drivers and physical devices, because these delays cannot be
improved by the system and are subject to the adopted protocols and underlying connections.

T P = IP IPSGw (1)

The equations are based on (1) which is the standard formula for processing time cal-
culation, where T P is the execution time, IP is the Instruction Count while the IPSGw is
the gateway specific Instructions Per Second capability. Our equations which we define in
the next subsections aim to adjust this formula to account for multiple processes running
and the load of the gateway. The Instructions count IP is analogous to the Unit Load Luij
presented in (7) while the IPSGwcomponent is analogous to the k1 and k2 constants from

9

(9). The differences in Instruction per second capability of the systems are adjusted using
the processing capacity PCap

j and processing speedup P Speed
j which is based on Amdahl’s

law [37] where we consider that most of the code designed for IoT systems is sequential
so a multi-core system will increase the processing capacity of our system but only a more
performant processor will speed it up.

4.1. Gateway Load

The gateway load is measured by the monitoring component on the gateway and is
measured as the total CPU usage in the system in (%). The gateway has two types of
overhead, the first type is generated by maintaining the cluster connections and background
applications. The second is generated by device message processing by their respective
drivers. Both are constant to a gateway and are not improved by migration.

We consider that the Gateway Cluster consisting of Gateways Gj having j denoting
the gateway number containing Applications Aij defined as application number i owned by
gateway j.

The Gateway processing speedup P Speed
j is calculated in (2) by comparing the execution

time TGwj of a bit of code on the gateway to the reference value TGwRef which was run on our

node with a P Speed
Ref of 1.

P Speed
j =

TGwj

TGwRefj P
Speed
Ref

(2)

The Gateway processing capacity PCap
j is calculated in (3) by comparing the measured

application load of a known reference application and comparing it to the value measured
on the reference gateway that has a processing capacity PCap

Ref of 1.

PCap
j =

Laij

LaiRef P
Cap
Ref

(3)

The Gateway Load LGwj the sum of Application Loads LAij and the Base Load LBj the
gateway in (4) and is measured in % of the CPU usage. This variable is directly measured
through the monitoring component.

LGwj = LBj +
∑

LAij (4)

As defined in (5), the Base Load LBj is the processing power used by system/background
processes and drivers which are considered constant throughout migration process.

LBj = LIdej +
∑

LDk λGwjk ∗ P
Cap
j (5)

The Idle Load LIdlej in (5) is the % CPU of the gateway j at rest without any message
passing or an application related activities. We consider this to be constant on every gateway,
regardless of applications or connected devices or peers.

10

The Gateways Driver Message Rate λGwjk used in (5) is defined as the total number of
messages njk sent and received by driver k on gateway j in a certain time interval ∆t and is
measured in messages per second (msg/sec). The Driver Load LDk in (5) is described as the
%CPU used by driver k to communicate with the devices connected to the gateway through
the driver for a certain message rate and is specific to each device driver.

The power consumption of a server or gateway can be a factor CPU Load, IO Rates,
Storage, Memory Accesses and other peripherals. If we consider a case where through
migration the resources and drivers are accessed from the same location the main components
that we would care about would be the CPU Load and added communication between
gateways. If we consider as we did in Reliability that the communication can be partially
accounted for by its effect on the CPU we can consider as in [38] that the Power Consumption
can be defined as a factor of the Gateway CPU.

4.2. Application Load

The total load of an application can be modelled based on our test data from the total
CPU usage of the application threads and the known messaging overhead added by the
driver and the container broker. These units are defined based on our test application set
but would describe any measurable application deployed on the gateway that functions in a
similar manner.

LAij =
(Luij + LM)λAij

PCap
j

(6)

The Total Application Load LAij in (6) defines the weight of the application on the Gate-
way j which is defined as the product of the application unit load Luij and the Message Load

LM adjusted to the processing capacity coefficient PCap
j and multiplied with the application

message rate λAij.
The Message Load LM in (7) is a constant that denotes the processing impact of the

received messages of an application and is the load created by the broker driver between the
messaging service and the containers event service. Laij and λAij in (7) are measured by the
monitoring application while Luij and LAij are calculated.

The Application Message rate or λAij used in (6) is defined as the total number of messages
nij sent and received and application i on gateway j in a certain time interval.

Luij =
Laij
λAij

PCap
j (7)

The Application Unit Load Luij is defined as the reference processing power used to
process one message of the application regardless of the current Message Rate. The Unit
Load in (7) is used to compare the behavior of different types of applications based on
their processor use and message rate, without knowing anything about how they work. We
consider if the processing power of the host remains the same, the Luij of the application is
constant indifferent of deployment location. The unit load is measured in % of the CPU
usage for the specified message rate or (%cpu/msg/sec)

11

The Measured Application Load Laij in (7) is defined by the amount of CPU the appli-
cation threads are using on average when running and is denoted by % of the total CPU, as
measured by the container monitor.

4.3. Delay Model

The delay of the application can be modeled based on the load of the gateway they are on,
the number of messages they receive and the amount of load they generate on the gateway.
Our model limits its predictability to applications that only perform major processing tasks
based on device messages and do not perform background operations. This method can be
used for a general application set but its predictability decreases by the amount that the
test application differing from our test model.

The Application Delay DA
ij can be formulated in (8) as the sum of all application related

delays, and is the sum of the processing delay DP
ij and the networking delay DN

ij .

DA
ij = DP

ij +DN
ij (8)

The Processing Delay DP
ij in (9) deducted from out experimental data in the next section,

where it is a function of the Gateway Load LGwj in (4), the Unit Load Luij defined in (7), the

Gateway processing speedup coefficient P Speed
j and the two constants k1 and k2. The values

of k1 and k2 are analogous to a reference IPSGw value and how it changes with load. The
value of k1 defines the reference IPS rate of the gateway with no load while k2 defines how
the k1 value is reduced with added load. These reference values are adjusted to differenciate
in gateway processing capabilities using P Speed

j .

DP
ij = Luij P

Speed
j (k1 + k2 LGwj) (9)

The Networking Delay DN
ij can be described by the sum of delays generated by routing

messages from one gateway to another through the messaging system and is described in
(10).

DN
ij = DR

Base +

j=GHost∑
k=GMigrated

DGj,Gk +DR
Ext (10)

DGj,Gk represents the network latency between j and k while the sum is the set of delays
that are required to link two gateways. If the application is deployed on the same gateway
as the devices, then DN

ij = DR
Base.

The External Routing Delay DR
Ext in (10) is a component of the Networking Delay and is

an experimentally derived platform specific constant that denotes the average time it takes
for a message to be routed from one gateway to another, not taking the latency inside the
network into account. The Base Routing Delay DR

Base is the delay added to any message
going from the driver to either local or external application, and is a fixed experimental and
platform specific value.

The Ping Delay DPing
j,k in (10) represents the latency between two directly connected

gateways and is measured by the monitoring component on the gateway.

12

DTot =
N∑
j=1

M∑
i=1

DA
ij (11)

The Overall Delay of the system DTot is described in (11) as the sum of all application
Delays defined in (8) on the system.

4.4. Reliability Model

For the reliability model we only consider the influence of the Total CPU load on the
Reliability of the system, because driver message rates and access values are unchanged when
migrating.Furthermore, we consider that the decreased reliability due to added message rates
between gateways is covered by the increased Gateway Load LGwj.

We adapt the load-hazard model in [39] which provides an analysis of the impact of Load
on the probability of the machine to run without any cpu or system errors. They propose a
load dependent hazard or failure rate model z(x) , where x is the gateway load LGwj . They
prove statistically that there is a correlation between increased load and increased failure
rates. They define the hazard rate z(x) as the probability of an error occurring at a cpu
load x+ ∆(x),where ∆(x) is the added load ,given that there was no failure at load x.

Considering (12) for defining reliability, where R(t) is a function of the hazard function
z(t) or a function of the constant failure rate λ. In the case of the hazard function we can
replace λ with z(LGwj) as we consider it constant in time as well.

R(t) = e−
∫ t
0 z(u)du = e−λt = e−z(LGw)t (12)

Based on the data from [39] the hazard function z(LGwj) is approximated to a third-
degree polynomial (13) where x is between 0.08 and 0.96 in CPU usage, the min value is
0.0018 and the max value 0.0118

z(x) = 0.0195x3 − 0.137x2 + 0.0059x+ 0.0015 (13)

Considering a constant runtime of a day or 24 hours we can define our Gateway Reliability
RGw
j using the Load based Reliability function R(LGwj) in (14). This gives us a maximum

reliability of 95.5% and a minimum reliability of 75.35%.

RGw
j = e−0.468LGw

j
3
+0.3288LGw

j
2−0.1416LGw

j −0.036 (14)

5. Optimization Methods

For our optimization, we consider the scenarios of an agile industrial environment with
certain Delay and Reliability requirement. Based on this we consider the main parameters
for our optimization to be the delay between gateway messages and the time it takes to
process them and the load of the gateway which affects reliability. We consider all other
messages to cloud, region, resources and peer applications as non-vital messages.

13

Load Balancing in the context of Fog Computing is mostly focused on optimizing the load
distribution between peers. In the context of CPS, we are particularly interested in individual
messages generating a response within an allocated time as a real-time constraint, rather
than having processed 100 messages in a certain time. Furthermore, different applications
may have different QoS requirements and constraints regarding latency.

5.1. Optimization Problem Description

Our methods are different from traditional load balancing and delay optimizations meth-
ods, as the proposed DO method focuses on reducing the single message delay time for all
applications on the system and the ConstDO method suggests reducing this delay but at-
tempting to satisfy the latency requirements of key applications first.

We aim to show that methods that improve certain variables might not be suitable for
others. The Reliability of the gateways increases exponentially with the Gateway Load while
the Power consumption increases linearly with the Gateway Load.

Using the application delay DA
ij and the Gateway Load LGwj we define four fitness func-

tions Cost(G,A) for the application set A on Gateways G to be optimized.
The first approach looks at increasing the reliability of the system, which due to the

exponential nature of the load-reliability relation can be achieved by reducing the load
variation between gateways. We define the fitness function for the Reliability Optimization
(RO) method (15) as the product of Gateway Reliability in the cluster due to the series type
dependence between them.

Cost(G,A) =
n∏
j=1

RGw
j (15)

The DO method based on (16) looks at reducing the overall delay of the cluster, which
we define as the sum of all application delays DA

ij in (11) from all the Gateways:

Cost(G,A) =
n∑
i=1

m∑
j=1

DA
ij (16)

The ConstDO method based on (17) looks at reducing the overall delay of the cluster
while maintaining or reducing the number of applications that exceed their constraints. This
can be done in two ways. We define CtAij the specific Delay constraint for application i on
gateway j. The first method used is the Hungarian method which allows for multiple cost
functions while the second one is the Genetic Algorithm (GA) which needs a fitness function
that returns only one value. The function in (18) modifies (17) to accommodate this.

Cost(G,A) =

[n∑
i=1

m∑
j=1

DA
ij;

n∑
i=1

m∑
j=1

DA
ij > CtAij

]
(17)

We achieve this by giving a certain delay to the applications that violate their constraints.
This is done by modifying the fitness function by adding a delay equivalent to the number
of applications over the constraint multiplied by a WCt = 100.

14

Cost(G,A) =
n∑
i=1

m∑
j=1

DA
ij +WCt

n∑
i=1

m∑
j=1

Dij > CtAij (18)

5.2. Optimization Methods

We use the different optimization algorithms with varying initial scenarios to assure that
the results of the optimizations reflect the characteristics of the fitness functions and not the
algorithms. The ConstDO and DO approaches have the best results when it comes to the
specific delays of applications, while the RO approach may cause added networking delay
due to unnecessary or counterproductive migration.

ALGORITHM 1: Modified Hungarian Algorithms

1 Set iter ← 0; minCost← Inf ; iniCost← Inf ;
2 while minCost ≤ iniCost and maxInter ≤ inter do
3 IniCost = Cost(G,A); iter ← iter + 1;
4 for g in G do
5 forall a in A where a /∈ g do
6 MoveApp a→ g;
7 projCosts← Cost(G,A);
8 if projCosts ≤ minCosts then
9 minCosts← projCosts;

10 min[g, a]← [g, a];

11 undo MoveApp a→ g;

12 iter ← iter + 1;
13 if minCosts < iniCost then
14 MoveApp min[a]→ min[g];

Optimizing the deployment of multiple applications to multiple gateways, discussed in
this paper, is an assignment problem, similar to multiple knapsack problems. Such gener-
alized assignment problem (GAP) is an NP-hard problem. Suppose that, we take a greedy
approach as in [40] and search the complete space of solutions. In such case, having n gate-
ways and k applications we would need to analyse alternative solutions. An extended review
of GAP and its applications was presented in [41] . Methods proposed to solve GAP can be
classified as exact and approximation (heuristic) algorithms. Both types of algorithms for
solving the assignment problem assume a priori existence of a matrix of edge weights,wi, or
costs, cij, and the problem is solved with respect to these values.

The first method applied to the problem discussed in this paper, is a modified Hungarian
method [42] extended to many-to-many assignment problems shown in Algorithm 1. It takes
initial allocation of m-applications to n-gateways, calculates its Cost(G,A) function based
on (15),(16) and (17). The next step is to find the lowest value and compare it with the
load cost of the current assignment. If the current assignment load cost is higher or equal
to the lowest value the configuration parameters are saved. These steps are repeated until
a more optimal assignment is no longer possible or the maximum iteration is reached.

15

ALGORITHM 2: Modified Genetic Algorithm

1 Set popSize← 500; genMax← 1000; pop← genPop(popSize);
2 while genCount ≤ genMax do
3 sortPop← sort(pop , Cost(G,A));
4 newPop← sortPop[1 ... popSize*0.2];
5 newPop← newPop + genPop(popSize*0.3);
6 for [indi1,indi2] in sortPop[1 ... popSize*0.6] do
7 for i = 0 to size(indi1) do
8 newIndi[i]← randomSelect(indi1[i],indi2[i]);
9 newPop← newPop + newIndi;

10 for indi in pop do
11 if random() ≤ 0.2 then
12 indi[random(1,len(indi))]← rand(1,gwCount);
13 newPop← newPop + indi;

14 pop← newPop

Second method used in Algorithm 2 is a modified Genetic Algoirthm that uses a one-
dimensional chromosome, where the i-th position in the chromosome represents the i-th
application and the encoded gene represents its allocated gateway. The optimization starts
with an initial population of 500 randomly generated strings and iterates over a 1000 gen-
erations while implementing natural selection of best fit strings. The tournament selection
is used to preserve the good solutions. The crossover rate is 50% chance for two selected
parents to swap parts of their genes and the mutation rate is based on the inverse of the total
number of applications. The Cost(G,A) function that were used are described in (15),(16)
and (18).

6. Parameter Analysis

We perform our tests in a physical environment based on the scenario in [22] presented in
Section 1 to find the parameters of our application and gateway model . Our testing environ-
ment consists of homogeneous Raspberry Pi nodes that have a processing speedup coefficient
of P Speed

j and processing capacity coefficient PCap
j of 1. When migrating to the cloud we

have two medium flavored VM’s on different hosts with varying processing capabilities.

6.1. Processing Capacity and Speedup

The Gateway processing speedup P Speed
j and processing capacity PCap

j are calculated
in (2) and (3) by deploying a reference application for 5 minutes and measuring a stable
4 minutes the load it creates and delays of the application. For our testing we deploy a
set of 5 applications with varying loads on top of 4 types of gateways, two VM’s and two
Raspberry Pi’s. The first VM (VM1) has 2 VCPU’s and 4GB of RAM on a host with an
i5-Intel Xeon E312 3.1Ghz Processor with a Bogomips value of 6185.94 . The second VM
(VM2) has 2 VCPU’s and 4GB of RAM on a host with an i7-4770 3.4GHz Processor with
a Bogomips value of 6784.28. The raspberry pi used is a nr. 2 model b with an ARM

16

Cortex-A53 1.2 GHz quad core processor and 1GB of ram . Two scenarios are considered
with the Raspberry pi, for the first (RPi1) its overclocked to 1.2GHz and for the second
(RPi2) its left at the base value of 1GHz. This overclocking changes the Bogomips value of
the pi from 697.95 to 732.2. The more performant VM and Raspbery pi is used for the rest
of the testing and evaluation.

For the estimation of the processing capacity PCap
j values we measure the systems CPU

use when on idle giving us an LIdle of 3.68% for the Raspbery Pi’s and 1.8% for the VM’s.
After this we deploy our load application with varying load. This application mimics our
standard applications but it performs the processing tasks on a timer rather then on received
messages making the created load more stable. The deployed loads were 0, 50, 100, 200,
300, 500, and 1000 cycles of the processing task. We measure the CPU load of the Machines
and based on (3) we get the processing capacity of the machines.

For the estimation of the processing speedup P Speed
j we deploy an application on the

machines and measure its Processing Delay DP
ij . We account for the differences in processing

capacity of the systems by deploying the load app to the more performant systems to match
the load of the others. The application deployed was given 50,100,250,500 and 700 cycles
of the processing task with a message rate of 5 giving us unit load Luij values of 0.55, 1.008,
2.448, 4.76 and 6.6126. We measure the processing times of these applications and based on
(2) we get the processing speedup of the machines.

Table 2: Processing parameters of the Machines

Machine VM1 VM1 RPi 1 RPi2

Processor
i7-4770
3.4 GHz

I5-Intex Xeon
3.1 Ghz

ARM
Cortex-A53

1.2 GHz

ARM
Cortex-A53

1.0 GHz

CPU Count 2 2 4 4

BogoMips 6784.28 6185.94 732.2 697.95

PCap
j 2.556 2.304 1 0.924

P Speed
j 4.307 4.189 1 0.874

From these experiments we get the results in Table 2., where we can see the differences
in the machines and that while the BogoMips is a good indicator of the direction of the
processing coefficients it can’t be used to estimate these.

6.2. Driver and Message Loads

We measure the loads of the drivers LDk on our system by measuring the idle load of
the system with the drivers running but no messages being sent through, after which we
send messages at different rates to a non-routable queue and measure the added load on the
CPU. We divide the results with the message rates and get the driver characteristic load for

17

each message received. We test this for the RF24 , Bluetooth and the TestingDrivers. The
tested message rates were 1, 3, 5, 10 and 20 messages every second.

To measure the load of routing the messages on the system and through the Karaf
container we use our TestingDriver to send messages to an application with a know Unit
load Lui j of 1.008 with varying message rates of 1,3,5 and 10. We measure the application
load and calculate the base load LBj based on the message rates, initial idle values and the
based on (6) we calculate the value of LM . We take the mean value of the 4 tests and that
gives us the reference value.

For the Driver Loads LDk we get averages of 1.61 for each RF24 message, 0.73 for each
Bluetooth Message and 1.10 for the Testing Driver. The difference in created load can
be attributed to the implementation of the drivers but also the hardware support on the
system. While the bluetooth driver has a dedicated chip that takes off some of the load
by implementing more of the OSI model on chip while for the RF24 most of this needs to
be done by the driver. For our driver, the load is caused by the measurements and data
retention. The average messaging load LM on the system was found to be 0.285.

6.3. Processing Delays

Figure 3: Processing Delay Variation

To estimate the processing delays DP
ij of the system we need to find k1 and k2 which

represent the characteristic delay for a certain amount of processing done with a certain
amount of load on the system. From our tests we have concluded that the RAM of the
system only comes into play when we go above 80% ram use, in which case the system may
crash. Furthermore, the message rate only influences every individual message by adding
load to the system, and when that contribution is taken out no further delay is added. If

18

the message rate exceeds the Karaf driver capacity or the application capacity we consider
an overload situation. In conclusion, for our system we test the impact of the Gateway Load
LGwj and the Application Unit Load Luij within normal operation parameters of the system
where RAM use doesn’t exceed 80% and the messaging rate doesn’t cause bottlenecks. We
can test for these through the Gateway monitoring application for RAM and the RabbitMQ
monitoring for queued up messages to validating the message rate.

For the testing we deployed 4 known application with the unit loads of 0.55,1.008,1.906
and 4.76 and a constant messaging rate of 5 messages every second. We measured the total
CPU of the system and the Application load through the monitoring component. To account
for different scenarios we increased the CPU usage of the gateways through the Load app.
We deployed this scenario on VM1 and RPi1 and got the points presented in fig. 3. Using
the equation from (9) and the performance values from table 2 we do a curve fitting to
match the data-points, having k1 and k2 as unknowns. The resulting function gives us the
slightly curved form of the two surfaces.

DP
ij = Luij P

Speed
j (38.409 + 0.1885 LGwj)

DP
i VM1 = Luij (9.169 + 0.0459 LGwVM1)

DP
i RPi1 = Luij (38.409 + 0.1885 LGwRPi1)

(19)

The resulting equations for DP
ij in the general case, for VM1 and for RPi1 can be seen in

(19). The value for k1 is 38.409 and 0.1885 for k2 where the first means that for each unit
of load we add 38.409 milliseconds of processing on a reference system while k2 means that
for each percentage of extra load we add 0.1885 milliseconds of processing delay for each
unit of load on the reference system. If we consider the processing speedup P Speed

j of the
machines the PRi1 stays the same while for the Vm this changes to 9.169 and 0.0459.

6.4. Networking Delays

We measure the Networking Delay by testing the response time of an application when
running on the RPi1 and when running on a VM1. Our monitoring component measures
the ping values between peers so we compare the response times to the ping values. The
latency between the two gateways was increased using netem [43] for Linux from 0 to 80ms
to match typical cloud-user latencies.

DN
ij = 9.83 +

j=GHost∑
k=GMigrated

DGj,Gk + 8.246 (20)

To get the value of the base Routing Delay DR
Base and that of the External Routing Delay

DR
Ext we subtract the processing delay from the total delay which gives us to total DN

ij . From
this we subtract the measured ping value DGj,Gk between the two gateways which gives us
DR
Base + DR

Ext. We then subtract the mean values for local processing where only DR
base is

present with a value of 9.83ms. The resulting DR
Ext has a mean of 8.246ms giving us the

equation for DN
ij in (20).

19

The graphs in fig. 4 shows the impact the networking delay has on the total delay, giving
us a set of gateway load LGwj and Unit Load Luij threshold value where applications have
smaller latencies on the gateway than on the cloud VM. If we consider the P1 points on the
figure we can see the diffrence in their values between processign and total delay on both
the VM and the RPi. For these cases the points are a result of having an app with a LUij of
1.906 and a gateway load LGwj for the RPi of 51.917% and 51.425% for the VM. This gave
us a calculated Total Delay of 101.69ms for the RPi and 90.57ms for the VM. The actual
values were 108.743ms for the RPi and 85.051ms for the VM. This gives us a mean error of
6.29%.

Figure 4: Application Delays variation

7. Model Validation and Testing

For these tests we propose a set of applications that have different loads and message
rates. We tested them individually on the gateways, deployed them as groups and migrated
components to verify that the presented application model stands and that the estimations
for Gateway Load and Application Delay are correct. Based on these we measure the
accuracy of our model.After the model is verified and the resulting parameters tested, we
perform two sets of optimization tests.

The first set consists of testing the optimization of a system of four gateways having
a varying set of applications deployed on them. We measure the run-time parameters,
validating them to the model, then run the optimization algorithms, deploying the results
and validating them on the physical system. Based on these tests we can say how well the
two approaches work on a small-scale deployment.

In the second set we test the scalability of the methods and optimization algorithms by
generating a random set of gateways with a set of available cloud VMs with random latencies

20

between them and a random set of deployed applications and look at how well each method
performs.

The main assessment criteria for our model is the precision of the Load and Delay
estimation on the system. For the optimization methods, we assess them by looking at the
decrease in application delays and the reduction of constraint violations that are adjusted
to the size of the cluster by looking at how much the total delay drops on average for
each gateway as well as how many applications can fulfill their requirements on average per
gateway.

7.1. Single and Bundled Model validation

The initial models error is known from the fitting tests which gave us 7.34%. A more
extensive test is performed and the results evaluated when deploying to four RPi1 type
gateway and an equivalent cloud GW. We have designed 8 applications with varying loads
if 0.465, 1.45, 4.265 and 9.915 and varying message rates of 1, 4 and 20. This test consists
of deploying applications on a free gateway, measuring the app and the gateways run-time
parameters and comparing them to the estimations that the application model made.The
Idle Load LIdlej in (5) for these tests is 5.64. Our estimations of a single app deployment
had an average error for the Total Load of 3.30% and 4.99% for the Estimated Delay, with
a maximum error for the load of 5.68% and 8.35% for the delay. These maximum values
were achieved at the edges of the linearization by two apps. For further testing we consider
a remainder of 9 apps that lacked the maximums.

Bundled deployment testing considers the applications from the first test and deploys
10 sets of them on the gateway and verifies how accurate the model is in determining the
application delay and the total processor use. For these tests, we consider the applications
having the same Unit Load as determined previously.

From these tests, we concluded that the mean Gateway Load estimation error when
deploying a set of applications is 3.92% while the maximum value is 8.6% which was found
for the deployments with applications of low message rates. The Delay estimation error was
found to have a mean of 5.47% and a worst result of 9.04% from the same set of applications.

For the final tests, we migrate an application, measure the changes in the original host
of the application and consider the delay time of the application and how accurate this
estimation was. The resulting errors measure the estimation error correlated to the total
value of the delay. In these cases, we got an average estimation error of the CPU of 2.26%
with a maximum of 4.91. The delay estimations had an average error in accuracy of 1.75%
with a peak of 4.4%. This is partially due to the small size of the errors compared to the
total delay as well as using monitored parameters to estimate the results of the migration.

7.2. Optimization on Physical Devices

We consider our Fog of Things Platform in [36] having 4 gateways and a Virtual Cloud
Gateway as our system. The gateways have a delay between them of an average of 19.53ms
while the delay between the cloud gateway is set to an average of 42ms. The initial state of
the cloud is empty only having application migrated to it after optimization if needed. We
generate a set of initial configurations which we deploy and monitor on the gateways. After

21

100

300

500

700

D
e

la
y

 (
m

s)

Gateway1 Gateway2 Gateway3 Gateway4 CloudGateway

C
P

U
 u

se
(%

)

4

5

6

8

3

7

3

4

5

2

1 0

20

40

60

80

100
Gateway Load
Gateway Delay

Figure 5: Initial Deployment

that we feed the information into the optimization algorithms that come up with the best
solution within the parameters and proposed functions.

0

200

400

600

800

D
e

la
y

 (
m

s)

Gateway1 Gateway2 Gateway3 Gateway4 CloudGateway

C
P

U
 U

se
(%

)

20

40

60

80

100Gateway Load
Gateway Delay

7

38

6

4

5

4

2

3

1

5

(a) Delay Optimization (DO)

0

200

400

600

800

D
e

la
y

 (
m

s)

Gateway1 Gateway2 Gateway3 Gateway4 CloudGateway

C
P

U
 U

se
(%

)

20

40

60

80

100

Gateway Load
Gateway Delay

8

6

4

4

7

3
5

1
2

3

5

(b) Constraint Delay Optimization (ConstDO)

Figure 6: Delay Optimization Results

We then take the results and test them on the physical cluster and examine what the
actual values of the proposed new configuration are. The initial Delays and CPU usage
of the gateway can be seen in Fig 5. The total delay of the system is 1881.80ms while
the average Load variation is 21.67% with a System Reliability of 66.53% and there are 2
applications that do not meet their constraints.

For this initial phase, we are interested in the differences in results from the given fitness
functions. For this set we used the best results for each function from the Hungarian, GA
and Random methods. The results can be seen in fig. 7 for RO and fig. 6 for DO and
ConstDO.Here the number represents the application ID.

From these tests, we can see that while the Reliability Optimization method managed
to reduce the load variation to 2.07% and gave us the maximum reliability of 73.56%. This
didn’t improve constraint violations and it actually increased the delays to 2038ms due to
unnecessary migration. The DO achieved a minimum total delay of 1854ms with 1 constraint
violation while the ConstDO had a higher total delay of 1974.1 ms but managed to have

22

0 constraint violations. Both the DO and ConstDO methods improved the Reliability to
72.35% and 71.43% which is an improvement to the initial deployment but falls short of the
RO results.

0

200

400

600

800
D

e
la

y
 (

m
s)

Gateway1 Gateway2 Gateway3 Gateway4 CloudGateway

C
P

U
 U

se
(%

)

20

40

60

80

100

4

5
6

8

3

7

3

4

52

1

Gateway Load
Gateway Delay

Figure 7: Reliability Optimization Results

7.3. Scaling Simulation of the Optimization Algorithms

10 20 40 80
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
e

li
a

b
il

it
y

 Im
p

ro
v

e
m

e
n

ts
 (

%
)/

G
w

Physical Gateway Count

RO
DO
ConstDO

(a) Reliability improvements

10 20 40 80
−20

−15

−10

−5

0

5

10

15

20

D
e

la
y

 Im
p

ro
v

e
m

e
n

t(
m

s)
/G

w

Physical Gateway Count

RO
DO
ConstDO

(b) Delay improvements

10 20 40 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
o

n
st

ra
in

t
Im

p
ro

v
e

m
e

n
ts

/G
w

Physical Gateway Count

RO

DO

ConstDO

(c) Constraint Violation Improvements

Figure 8: Scaling Tests

The scaling tests are designed to show how these methods behave when scaling the cluster
size. Such scaling would result in the increase of the base load of a system. For our testing,
we generate a set of gateways with the existing parameters.

23

We generate 5 deployments of 10, 20, 40 and 80 gateways and look at the resulting
reduction in the total Delay and the number of applications over their constraints. The
results of these tests can be seen in Fig. 8(a) for the Reliability, Fig. 8(b) for the constraints
violations and Fig. 8(c) for the Delay. We consider the average results of 5 test for all
approaches throughout the scaling. To adjust for the size of the clusters we divide the
resulting improvements over the total gateway count.

We can see from the results of the experiments that the behaviors from the physical
tests are maintained throughout the scalability tests where the best results based on delay
are reached by the DO algorithms while the ConstDO is best at reducing the constraint
violations and the RO is best at increasing the reliability of the system.

These tests also show that with the increased scale of the system, the capability of all
methods to find good solutions decreases. With this increase in size the processing times
increase exponentially as well. Global optimization methods designed for large-scale Fog
environments need to account for both the interconnectivity and heterogeneity of these
systems, but should also consider their scale.

8. Conclusions and Future Work

When considering CPS and Industrial environments, the latencies of a system and its
reliability are crucial components. Estimation and Optimization attempts in Fog Computing
and IoT need to consider as a complete model as possible for their methods so they do not
lose applicability and accuracy.

Our model and platform provides a way of measuring and estimating the runtime pa-
rameters and migration benefits of applications in such systems. Based on our model we
propose a novel approach to load and delay optimization through application migration be-
tween the Edge and the Cloud. These allow us to estimate and improve certain parameters
of deployed applications. Inspired by [44], an experimental load model description derived
from measuring runtime parameters over physical systems has been developed and used to
represent the gateway and application loads, which provide a more realistic estimation than
theoretical ones presented in other papers.

The experimental results have shown that the system has an overall accuracy of over 90%
for both the Delay and Load models. Furthermore, testing on physical systems has shown
that even in different scales for both the physical and virtual environment, our proposed
methods provided improvements for applications meeting their constraints and reduced the
overall delay of the system compared to the initial deployment scenario. The results also
show that it has outperformed the Load variation based Reliability Optimization Method in
terms of delay improvements, but pared on the reliability. Most importantly the Constraint
based optimization method managed to clear all constraint violations for the physical system
and reduced these by an average of 67% for the scaling tests.

The assignment problem that results from attempting to minimize the proposed methods
is an NP hard placement problem with interdependent parameters that has proven to be a
challenging one for both heuristic and deterministic methods, neither being able to provide
the best results in all cases. A drop in the improvements of the provided by the methods

24

can be seen with the increase of scale, this is cause by the exponential increase in the search
domain of possible solutions. This suggests that proposals are required that can account
for the challenges resulting from the scale and heterogeneity of fog systems In future work
we will examine how these can be improved and how the complexity of the problem can be
reduced.

In our future work we will expand our methods to include migration costs, and other
parameters. We will look at combining the delay and reliability methods to allow gateway
and app profile based optimization. Finally, we will be looking at advanced methods of
optimization together with varying techniques and objective functions to improve various
aspects of deployment.

References

[1] J. Lee, B. Bagheri, H.-A. Kao, A Cyber-Physical Systems architecture for In-
dustry 4.0-based manufacturing systems, Manufacturing Letters 3 (2015) 18–23.
doi:http://dx.doi.org/10.1016/j.mfglet.2014.12.001.

[2] DIN, German Standardization Roadmap Industry 4.0 (Version 2) (2016).
[3] Y. Lu, Industry 4.0: A survey on technologies, applications and open research issues, Journal of Indus-

trial Information Integration 6 (2017) 1–10. doi:10.1016/j.jii.2017.04.005.
[4] A. J. C. Trappey, C. V. Trappey, U. H. Govindarajan, J. J. Sun, A. C. Chuang, A Review of Technology

Standards and Patent Portfolios for Enabling Cyber-Physical Systems in Advanced Manufacturing,
IEEE Access 4 (2016) 7356–7382. doi:10.1109/ACCESS.2016.2619360.

[5] L. Wang, M. Törngren, M. Onori, Current status and advancement of cyber-physical sys-
tems in manufacturing, Journal of Manufacturing Systems 37, Part 2 (2015) 517–527.
doi:http://dx.doi.org/10.1016/j.jmsy.2015.04.008.

[6] S. Wiesner, E. Marilungo, K.-D. Thoben, Cyber-Physical Product-Service Systems: Challenges for
Requirements Engineering (Mini Special Issue on Smart Manufacturing), International journal of au-
tomation technology 11 (1) (2017) 17–28.

[7] P. Mell, T. Grance, The NIST Definition of Cloud Computing, Tech. rep. (2011).
[8] R. Chaâri, F. Ellouze, A. Koubâa, B. Qureshi, N. Pereira, H. Youssef, E. Tovar,

Cyber-physical systems clouds: A survey, Computer Networks 108 (2016) 260–278.
doi:http://dx.doi.org/10.1016/j.comnet.2016.08.017.

[9] Health and Safety Executive, Health and safety in engineering workshops (2004).
[10] R. Deng, R. Lu, C. Lai, T. H. Luan, H. Liang, Optimal Workload Allocation in Fog-Cloud Computing

Toward Balanced Delay and Power Consumption, IEEE Internet of Things Journal 3 (6) (2016) 1171–
1181. doi:10.1109/JIOT.2016.2565516.

[11] Y. Jiang, A Survey of Task Allocation and Load Balancing in Distributed Systems, IEEE Transactions
on Parallel and Distributed Systems 27 (2) (2016) 585–599. doi:10.1109/TPDS.2015.2407900.

[12] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in the internet of things (2012).
doi:10.1145/2342509.2342513.

[13] C. T. Do, N. H. Tran, Chuan Pham, M. G. R. Alam, Jae Hyeok Son, C. S. Hong, A proximal algo-
rithm for joint resource allocation and minimizing carbon footprint in geo-distributed fog computing,
in: 2015 International Conference on Information Networking (ICOIN), IEEE, 2015, pp. 324–329.
doi:10.1109/ICOIN.2015.7057905.

[14] R. Mahmud, R. Buyya, Fog Computing: A Taxonomy, Survey and Future DirectionsarXiv:1611.05539.
[15] M. Dı́az, C. Mart́ın, B. Rubio, State-of-the-art, challenges, and open issues in the integration of Internet

of things and cloud computing, Journal of Network and Computer Applications 67 (2016) 99–117.
doi:10.1016/j.jnca.2016.01.010.

[16] I. Stojmenovic, Fog computing: A cloud to the ground support for smart things and machine-to-machine

25

networks, in: 2014 Australasian Telecommunication Networks and Applications Conference (ATNAC),
2014, pp. 117–122. doi:10.1109/ATNAC.2014.7020884.

[17] L. Gu, D. Zeng, S. Guo, A. Barnawi, Y. Xiang, Cost Efficient Resource Management in Fog Computing
Supported Medical Cyber-Physical System, IEEE Transactions on Emerging Topics in Computing 5 (1)
(2017) 108–119. doi:10.1109/TETC.2015.2508382.

[18] F. Tao, Y. Cheng, L. D. Xu, L. Zhang, B. H. Li, CCIoT-CMfg: Cloud Computing and Internet
of Things-Based Cloud Manufacturing Service System, IEEE Transactions on Industrial Informatics
10 (2) (2014) 1435–1442. doi:10.1109/TII.2014.2306383.

[19] S. K. Khaitan, J. D. McCalley, Design Techniques and Applications of Cyberphysical Systems: A
Survey, IEEE Systems Journal 9 (2) (2015) 350–365. doi:10.1109/JSYST.2014.2322503.

[20] A. James, J. Cooper, K. Jeffery, G. Saake, Research directions in database architectures for the internet
of things: a communication of the first international workshop on database architectures for the internet
of things (dait 2009), Dataspace: The Final Frontier (2009) 225–233.

[21] Y. Nikoloudakis, S. Panagiotakis, E. Markakis, E. Pallis, G. Mastorakis, C. X. Mavromoustakis, C. Do-
bre, A Fog-Based Emergency System for Smart Enhanced Living Environments, IEEE Cloud Comput-
ing 3 (6) (2016) 54–62. doi:10.1109/MCC.2016.118.

[22] N. Verba, K.-M. Chao, A. James, J. Lewandowski, X. Fei, C.-F. Tsai, Graph analysis of fog computing
systems for industry 4.0, in: 2017 IEEE 14th International Conference on e-Business Engineering
(ICEBE), IEEE, 2017, pp. 46–53.

[23] M. Garćıa-Valls, T. Cucinotta, C. Lu, Challenges in real-time virtualization and pre-
dictable cloud computing, Journal of Systems Architecture 60 (9) (2014) 726–740.
doi:http://dx.doi.org/10.1016/j.sysarc.2014.07.004.

[24] L. D. Dhinesh Babu, P. Venkata Krishna, Honey bee behavior inspired load balancing of
tasks in cloud computing environments, Applied Soft Computing 13 (5) (2013) 2292–2303.
doi:http://dx.doi.org/10.1016/j.asoc.2013.01.025.

[25] G. Lee, B.-G. Chun, H. Katz, Heterogeneity-aware resource allocation and scheduling in the cloud
(2011).

[26] J. L. Lucas-Simarro, R. Moreno-Vozmediano, R. S. Montero, I. M. Llorente, Scheduling strategies for
optimal service deployment across multiple clouds, Future Generation Computer Systems 29 (6) (2013)
1431–1441. doi:http://dx.doi.org/10.1016/j.future.2012.01.007.

[27] Z.-H. Zhan, X.-F. Liu, Y.-J. Gong, J. Zhang, H. S.-H. Chung, Y. Li, Cloud Computing Resource
Scheduling and a Survey of Its Evolutionary Approaches, ACM Comput. Surv. 47 (4) (2015) 1–33.
doi:10.1145/2788397.

[28] J. Hu, J. Gu, G. Sun, T. Zhao, A Scheduling Strategy on Load Balancing of Virtual Machine Resources
in Cloud Computing Environment, in: 2010 3rd International Symposium on Parallel Architectures,
Algorithms and Programming, 2010, pp. 89–96. doi:10.1109/PAAP.2010.65.

[29] J. Zhao, Y. Ding, G. Xu, L. Hu, Y. Dong, X. Fu, A Location Selection Policy of Live Virtual Ma-
chine Migration for Power Saving and Load Balancing, The Scientific World Journal 2013 (2013) 16.
doi:10.1155/2013/492615.

[30] X. Wu, M. Deng, R. Zhang, B. Zeng, S. Zhou, A Task Scheduling Algorithm based
on QoS-Driven in Cloud Computing, Procedia Computer Science 17 (2013) 1162–1169.
doi:http://dx.doi.org/10.1016/j.procs.2013.05.148.

[31] F. Ramezani, J. Lu, F. K. Hussain, Task-Based System Load Balancing in Cloud Computing Using
Particle Swarm Optimization, International Journal of Parallel Programming 42 (5) (2014) 739–754.
doi:10.1007/s10766-013-0275-4.
URL http://dx.doi.org/10.1007/s10766-013-0275-4

[32] S. Ningning, G. Chao, A. Xingshuo, Z. Qiang, Fog computing dynamic load balancing mechanism based
on graph repartitioning, China Communications 13 (3) (2016) 156–164. doi:10.1109/CC.2016.7445510.

[33] S. Verma, A. K. Yadav, D. Motwani, R. S. Raw, H. K. Singh, An efficient data replication and load bal-
ancing technique for fog computing environment, in: 2016 3rd International Conference on Computing
for Sustainable Global Development (INDIACom), 2016, pp. 2888–2895.

26

[34] L. F. Bittencourt, M. M. Lopes, I. Petri, O. F. Rana, Towards Virtual Machine Migration in Fog Com-
puting, in: 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing
(3PGCIC), 2015, pp. 1–8. doi:10.1109/3PGCIC.2015.85.

[35] X. He, Z. Ren, C. Shi, J. Fang, A novel load balancing strategy of software-defined cloud/fog
networking in the Internet of Vehicles, China Communications 13 (Supplement2) (2016) 140–149.
doi:10.1109/CC.2016.7833468.

[36] N. Verba, K.-M. Chao, A. James, D. Goldsmith, X. Fei, S.-D. Stan, Platform as a service gateway for
the Fog of Things, Advanced Engineering Informaticsdoi:http://dx.doi.org/10.1016/j.aei.2016.11.003.

[37] M. D. Hill, M. R. Marty, Amdahl’s law in the multicore era, Computer 41 (7).
[38] M. Blackburn, G. Grid, Five ways to reduce data center server power consumption, The Green Grid.
[39] R. K. Iyer, D. J. Rossetti, A Measurement-Based Model for Workload Dependence of CPU Errors,

IEEE Transactions on Computers C-35 (6) (1986) 511–519. doi:10.1109/TC.1986.5009428.
URL http://ieeexplore.ieee.org/document/5009428/

[40] L. Özbakir, A. Baykasolu, P. Tapkan, Bees algorithm for generalized assign-
ment problem, Applied Mathematics and Computation 215 (11) (2010) 3782–3795.
doi:http://dx.doi.org/10.1016/j.amc.2009.11.018.

[41] D. W. Pentico, Assignment problems: A golden anniversary survey, European Journal of Operational
Research 176 (2) (2007) 774–793. doi:http://dx.doi.org/10.1016/j.ejor.2005.09.014.

[42] H. W. Kuhn, The Hungarian Method for the assignment problem, Naval Research Logistics Quarterly
2 (1955) 83–97.

[43] S. Hemminger, Network Emulation with NetEm.
URL https://www.rationali.st/blog/files/20151126-jittertrap/netem-shemminger.pdf

[44] T. Kunz, The influence of different workload descriptions on a heuristic load balancing scheme, IEEE
Transactions on Software Engineering 17 (7) (1991) 725–730. doi:10.1109/32.83908.

27

