Application Deployment Framework for
large-scale Fog Computing
Environments

by
Nandor Verba

Doctor of Philosophy

August 2018

S

ven
Sglveert%

A thesis submitted in partial fulfilment of the University’s requirements for the Degree of
Doctor of Philosophy Doctor of Philosophy

Acknowledgements

I would like to acknowledge and express my thanks to my director of studies, Professor
Kuo-Ming Chao for the long meetings and difficult to answer questions that led to the
breakthroughs in my thesis as well as allowing me to have a firm grasp on defending and
explaining my work. Furthermore, I would like to thank all other members of my supervisory
and research team, Prof. Anne James, Dr. Xiang Fei, Dr. Jacek Lewandowski, Dr. Nazaraf
Shah and Dr. Daniel Goldsmith, without whom this work would have not been completed.

I would also like to show my gratitude to members of staff at both the Faculty of
Engineering and Computing but also members from the Academic Support Unit. They made
my time at the University better and simpler through their help and support.

I am also thankful for the teaching and development opportunities that came with support-
ing Dr. Norlaily Yaacob and others on their modules. I would also like show my gratitude
for the help and support I received from the Manufacturing an Technology Centre, the Future
Transportation Centre and also for the funding support from the Global Leaders Program.

Finally, I would like to wholeheartedly thank my family, Helga and my friends for their
support during my thesis. They helped me along my way and without them I could have not
finished in time, or at all.

In summary, this thesis could not have been submitted without the support and help of
some amazing people and they have my gratitude for all of the things they did to push me
and the thesis along.

List of Publications

Journals

[1] Verba, N., Chao, K.M., James, A., Lewandowski J.,Shah. N., Tian F., 2018, Modelling
Industry 4.0 based Fog Computing environments for Application analysis and deploy-

ment Future Generations Computer Systems

[2] Verba, N., Chao, K.M., James, A., Goldsmith, D., Fei, X. and Stan, S.D., 2017. Plat-
form as a service gateway for the Fog of Things. Advanced Engineering Informatics, 33,
pp. 243-257.

[3] Fei. X., Sanchez-A. V., Lewandowski J., Chao, K.M., Verba N., Shah. N., James. A.,
Usman Z., 2018, CPS Data Streams Analytics for Cloud and Fog Computing: A Survey,

Future Generation Computer Systems (Accepted for Publication)

Conferences

[4] Verba, N., Chao, K.M., James, A., Lewandowski, J., Fei, X. and Tsai, C.F., 2017,
November. Graph Analysis of Fog Computing Systems for Industry 4.0. In 2017 IEEE
14th International Conference on e-Business Engineering (ICEBE) (pp. 46-53)

[5] Verba, N., Chao, K.M.,Soizic L.,, Eleni A., September. Smart Transportation plat-
form for big data analytics and interconnectivity. In 2018 International Conference on
Traffic and Transportation Engineering (ICTTE) (Accepted for Publication)

Abstract

The extension of the Cloud to the Edge of the network through Fog Computing can have a
significant impact on the reliability and latencies of deployed applications. Recent papers
have suggested a shift from Virtual Machines and Container based deployments to a shared
environment among applications to better utilise resources. Unfortunately, the existing
deployment and optimisation methods don’t account for application interdependence or the
locality of application resources which can cause inaccurate estimations. When considering
models that account for these however, the optimisation task of allocating applications to
gateways becomes a difficult problem to solve that requires either model simplifications or
tailor-made optimisation methods.

The main contribution of this thesis are the weighted clustering methods that aim to solve
the scaling challenges of future large-scale fog deployments that were based on the identified
characteristics, models and challenges of these systems. This contribution was attained by
first addressing some existing [oT issues by proposing a Fog of Things gateway platform
that looks at answering the existing connectivity and translation requirements. The proposed
platform was used to formulate a new data-driven reference model that is used to estimate
the effects of application deployment and migration on these systems. Based on this model,
weighted clustering and resource allocation methods are proposed, that are then improved by
a set of weight tuning methods focusing on analysing favourable and sample deployments.

These proposals were validated by running tests based on some Industry 4.0 case studies.
Different scenarios were used to identify the scaling and deployment characteristics of these
systems. Based on these, physical and virtual tests were carried out to validate the models
and to evaluate the proposed methods. The findings show that the proposed application and
gateway model can predict the load and delay of components to an accuracy of 91%. These
have also shown that within the presented scenarios, constraints and Fog sizes larger than
300 applications, the proposed weighted clustering methods can significantly improve the

utility of deployments and in some cases, these are the sole providers of solutions.

Table of contents

List of figures xvii
List of tables xxi
Nomenclature xxiii
1 Introduction 1
1.1 Research Context, 1

1.2 ResearchProblem 2

1.3 Research Aims and Objectives 3

1.4 Novelty and Contribution 4

1.5 Thesis Structure L. 5

2 Research Background 7
2.1 Internetof Things 7

2.2 Fogand Cloud Computing 9

2.3 Industry 4.0 Requirements 11

2.4 Gateway and Middleware Platforms 13

2.5 Application and System Model 17

2.6 Deploymentinthe Fog 19
2.6.1 LoadBalancing L 20

2.6.2 Global optimisation Techniques 21

2.7 Network Analysis and Clustering 23

2.8 Summary e e e e 24

3 Methodology 27
3.1 Introduction L L 27

3.2 Research Methodology, 27

3.3 Fogof Things Platform 28

xii

Table of contents

3.4 Application and Gateway Model L.
3.5 Clustering based optimisation method
3.6 Validationand Analysis Lo

Fog of Things Platform

4.1 General View and Platform Requirements
4.1.1 Protocol Agnostic Device Messaging
4.1.2 Regional Connections and Messaging
413 Multi-CloudTenancy
4.1.4 Modular Application Deployment
4.1.5 Application Migration, Clustering and Testing functionalities

4.2 Generic Gateway Architecture
4.2.1 Local Messaging Service
4.2.2 Cloud Controller and Local Resources
4.2.3 M2M Communication and Registration
4.2.4 Application Container
4.2.5 Regional Communications and Clustering
4.2.6 Cloud Connection and Management
4.277 Migration and Message Routing on the Platform
4.2.8 Application and Gateway Monitoring

4.3 Architecture Implementation L.
43.1 DeviceDrivers
4.3.2 Application Container
4.3.3 Regional and Cloud Drivers

4.4 Summary e e

Application and Gateway Model
5.1 OverviewofModel
52 GatewayLoad
5.3 ApplicationLoad
54 DelayModel
5.5 Reliability Model
5.6 Parameter Analysis
5.6.1 Processing Capacity and Speedup
5.6.2 Driverand Message Loads
5.6.3 ProcessingDelays,
5.6.4 Networking Delays

Table of contents xiii

5.7 Utlity Functions 57
5.8 Summary 59
6 Deployment Optimisation 61
6.1 Introduction 61
6.2 Problem Description and Categorisation 62
6.3 Overview of Approaches 64
6.4 Deployment validation and Utility Calculation 66
6.5 Modified Genetic Algorithm based Method 66
6.6 Clustering e e 70
6.6.1 Random Clustering 71

6.6.2 Distance based clustering oL 72

6.6.3 Weights and Attributes based clustering 73

6.6.4 Eps Value Estimation and Improvements 75

6.7 Resource Allocation. 76
6.7.1 RandombutFair 76

6.7.2 Shared Resource Based Allocation 76

6.7.3 Weighted Property based Resource Allocation. 77

6.7.4 Correlation and Weights based Resource allocation 78

6.8 Proposed Methods 80
6.8.1 Connections based Clustering and Resource Allocation 80

6.8.2 Iterative Correlation based Clustering and Optimisation 81

6.8.3 Sampled Data based Correlation and Weight Calculation 86

6.9 Summary 88
7 Evaluation and Analysis 91
7.1 Analysis and Replication: AME Case Study 92
7.1.1 UseCaseDescription 92

7.1.2 Analysis Parameters 95

7.1.3 Replication Data Analysis 100

7.1.4 Network Analysis 101

7.1.5 Replication Analysis 104

7.2 Model Validation 105
7.2.1 Single Deployment Validation 106

7.2.2 Bundled Deployment Validation 107

7.2.3 Migration Deployment Validation 107

7.3 Physical System Deployment Optimisation 108

xiv

Table of contents

7.4 BEvaluationUse Cases i i 110
7.4.1 Delay Optimisation scenario 110

7.4.2 Weighted Multi-Component Utility scenario. 111

7.4.3 Capability Constraint and Utility scenario 111

7.5 Testing Parameter Selection. 112
7.5.1 GA Parameter Selection 112

7.5.2 Clustering Parameter Selection 117

7.6 Performance Analysis 118
7.6.1 SmallScaleTests 119

7.6.2 Medium Scale Tests 121

7.63 LargeScaleTests 122

7.64 ConcClusions e e 124

7.7 Scalability Analysis 124
7.77.1 Delay Scenario 125

7.7.2 Multi-Parameter Scenario 126

7.7.3 Capability Scenario 127

7774 Conclusions e 129

7.8 Component Evaluation 129
7.8.1 Resource Allocation 130

7.82 Clustering o v v e e 132

7.83 WeightsTuning 133

7.84 Conclusions 137

8 Conclusions and Future Work 139
8.1 ResultsOverview e 139
8.1.1 Platform Review L. 139

8.1.2 Model Review 140

8.1.3 Deployment Method Review 141

8.2 AnswertoResearchQuestions 142

8.3 Future Work and Directions 143
References 145
Appendix A VisJs Visualisation Platform 155
Appendix B Code Snippets 159

Appendix C Example Deployment File 169

Table of contents XV

Appendix D Physical Backbone of the System 171

Appendix E Optimisation Run-time Log Example 175

List of figures

2.1
2.2
23

3.1

4.1
4.2
4.3
4.4

5.1
5.2

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4
1.5
7.6
7.7
7.8
7.9

(Hakiri et al. 2015) Overview of IoT Vision and Architecture 8
(P. Verma and Sood 2018) Example of Fog Environment 10
(Barreto, Amaral, and T. Pereira 2017) Industry 4.0 Use-Case 12
Overview of Research Methodology 28
Architecture of the Gateway L. 33
Messaging Exchanges androuting 35
Migration e e e 41
Registration sequence diagram 43
Processing Delay Variation 55
Application Delays variation, 56
Highlevel viewof Methods 65
Chromosome used for GA 68
Crossingusedfor GA 69
Mutationused for GA 69
Overview of Methods 89
Parts and Flow Monitoring subsystem 94
Energy Monitor and Control subsystem 95
Access, Safety and Environmental Monitoring and Control 96
Combined System 97
DBScan Clustering Results 103
Graph Degree Distribution of Systems 104
Graph Betweenness Distribution of Systems 104
Replicated Systems 105
Single Deployments Results 106

7.10 Bundled Deployments Results 107

xviii

List of figures

7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25
7.26
7.27
7.28
7.29
7.30
7.31
7.32
7.33
7.34
7.35
7.36
7.37
7.38
7.39
7.40
7.41
7.42
7.43
7.44
7.45

A.l

Migration Deployments Results 107
Initial Deployment L L L 108
Delay Optimisation ot i i 109
Constraint Delay Optimisation 109
Reliability Optimisation Results 110
Generation Size Variation Impact-Delay 114
Generation Size Variation Impact - Multi-Parameter 114
Generation Size Variation Impact - Capability 115
Stop Condition-Delay 115
Stop Condition - Multi-Parameter 116
Stop Condition - Capability 116
The effect of the Fog Size on Outcomes 118
Small scale Delay Scenario Performance test 119
Small scale Multi-Parameter Scenario Performance test 120
Small scale Capability Scenario Performance test 120
Medium scale Delay Scenario Performance test 121
Medium scale Multi-Parameter Scenario Performance test 121
Medium scale Capability Scenario Performancetest 122
Large scale Delay Scenario Performancetest. 123
Large scale Multi-Parameter Scenario Performance test 123
Large scale Capability Scenario Performance test 124
Delay Scenario Execution-Time Scalability test 125
Delay Scenario Utility Scalability test 126
Multi-Parameter Scenario Execution-Time Scalability test 126
Multi-Parameter Scenario Utility Scalability test 127
Capability Scenario Execution-Time Scalability test 128
Capability Scenario Utility Scalability test 128
Components Time Distribution 130
Resource Allocation Comparison Delay Scenario 131
Resource Allocation Comparison Multi-Parameter Scenario 131
Clustering Comparison Delay Scenario. 132
Clustering Comparison Multi-Parameter Scenario 133
Weights Tuning Evaluation for the Delay Scenario. 134
Weights Tuning Evaluation for the Multi-Parameter Scenario 135
Weights Tuning Evaluation for the Capability Scenario 136
VisJsPlatform 155

List of figures Xix

A2
A3
A4

B.1
B.2
B.3
B.4

C.1

D.1
D.2
D.3
D4

E.l

Initial Generated Fog o 156
Results of Distance Deployment 157
Results of Sampling and Weights Clustering Deployment 158
Sampling and Weights Algorithm Snippet 161
Testing App and Load generator Snippet 164
AMQP to Event Admin Broker Snippet 165
Bluetooth Driver Snippet o 167
Example JSON Deployment File Snippet 170
Physical Cluster 171
Software Stack 172
Spark Deployment 172
Physical Devicesand Nodes 173

Performance Test Log Example 178

List of tables

2.1

4.1
4.2

5.1

6.1

7.1
7.2
7.3
7.4

Platform and Middleware Features 15
Message from Driver 44
OSGI Message Translation 44
Processing parameters of the Machines 53
Example correlationresultso 83
Resource Use Parameters 101
Application Parameters oL Lo 102
Fixed Method Parameters 113

minPts parameter Selection Lo 118

Nomenclature

Acronyms / Abbreviations

AMQP Advanced Messaging Queue Protocol

API Application Programming Interface

BLE Bluetooth Low Energy

CGO Costly Global optimisation

CMM Coordinate Measuring Machine

CoAP Constrained Application Protocol

CPS Cyber-Physical Systems

DBSCAN Density-based spatial clustering of applications with noise
FOT Fog of Things

GA Genetic Algorithms

laaS Infrastructure as a Service

ICT Information and Communication Technology
IoS Internet of Services

IoT Internet of Things

IoV Internet of Vehicles

JSON JavaScript Object Notation

K — Means K-Means Clustering Method

Xxiv

Nomenclature

LAP Linear Assignment Problem

M2M Machine to Machine

MQTT Message Queue Transport Telemetry
NaaS Networking as a Service

NP non-deterministic polynomial time
OPTICS Ordering points to identify the clustering structure
OSGI Open Service Gateway Architecture
OSI Open System Interconnection Model
PaaS Platform as a Service

PSO Particle Swarm Optimisation

QAP Quadratic Allocation Problem

QoS Quality of Service

REST Representational State Transfer
RFID Radio Frequency Identification

RPC Remote Procedure Call

SAaaS Sensing and Actuating as a Service
SaaS Software as a Service

SDN Software Defined Networking
SenML Sensor Markup Language

SLA Service Level Agreement

SOA Service Oriented Architecture

SOC System on Chip

SOM Service Oriented Manufacturing

STOMP Stream Text Oriented Messaging Protocol

Nomenclature XXV

TaaS Things as a Service

URL Uniform Resource Locator

VM Virtual Machine

WAN Wide Area Network

WSN Wireless Sensor Networks

Methods / Functions

R(t) Reliability in function of time ¢

z(t) Hazard or Failure Rate Model at time ¢

z(x) Hazard or Failure Rate Model at Load x

Variables

A;j Application i deployed on Gateway j

AllocpyseTouroad Base Load to Unit Load Ratio for Gateway Allocation
Alloccgpay Capability similarity ratio for Gateway Allocation

Al lociClM + Resource Share Parameter for Gateway Allocation for Clusters
Allocper fcapTouroaa Performance Capability to Unit Load ratio for Gateway Allocation
AllocResshare Resource Share Parameter for Gateway Allocation
AllocgpecarouLoaa Performance Speedup to Unit Load ratio for Gateway Allocation
Allocgesshare Resource Share Parameter for Gateway Allocation

AV Groure Average path length in the Fog

CCF Clustering Coefficient

C,,, Clusterarea i for the Application

Ct" Total Constraint Violations in the Fog

WC onstraintyiolations
i

Weight of Constraint Violations for Application i

Clspiss Distance Parameter for Clustering

XXVi

Nomenclature

Clspsgrare Message Rate Similarity Parameter for Clustering
Clsgegsim Requirements Similarity Parameter for Clustering
Clscongr Constraint Similarity Parameter for Clustering
Clscysg,,, App to App Total Distance for Clustering

Clsyroaqd Unit Load Similarity Parameter for Clustering

Clsyiw Utility Weights Similarity Parameter for Clustering

DA

i Total Delay of Application i on Gateway j

D, Reference Delay for Application i

DY Total delay in the Fog

Dgjcr Total delay from Gateway j to Gateway k

Diameter The Diameter of the Fog

D} Networking Delay of Application i on Gateway j

DF. Processing Delay of Application i on Gateway j
ik Ping Value between Gateway i and j

The Base Networking Delay on the Platform

DX, External Jump Routing Delay

Dt Total Application Delay on the System

eps minimum distance for two nodes to be Neighbours

GBC Graph Betweenness Centrality

GDD Graph Degree Distribution

G; Gateway with id j

1 Instruction Count of a Process

IPS®" Instructions per second Capability of Gateway

k1,k2 Time Delay Calculation constant

Nomenclature

lA
ij
154
ij

A

i
Lock

u

Application Load on Gateway j on App i
Measured Application Load on Gateway j on App i
Message Rate of Application i

Constant Failure Rate

Message rate of Driver k on Gateway j
Base Load on Gateway j

The Load of Driver k

Load on Gateway j

Idlea Load on Gateway j

MessagelLoad

The Locality of type i of application k

Unit Load of Application i

minPts Minimum number of points to form a Cluster

Util" Estimated Utility in the Fog

Cap
Pj

PS peed

J

PS peed

Ref

A
RF

Gw
K;
Rge f
Ry

Type
RApp

Processing Capacity of Gateway j
Processing speedup of Gateway j
Reference Speedup Value

Reliability of App i

Total Reliability of the Fog

Reliability of Gateway j

Reference Reliability for the system
Reliability of Resource k on Gateway /

Resource use of Application

xxviii Nomenclature

riy Correlation between parameters x and y
Sy Standard deviation for parameter x

TG¥ Execution time of process on Gateway j
TP Execution time of a Process

TRcéy Reference execution time of process

Util¢ Utility of Cluster i

Util¢ Estimated Utility of Cluster i

U tilg clay Utility value for the Delay Optimisation scenario

Util" Total utility of the Fog

U til}lfjlultifc omp Utility value for the Weighted Multi-Component Optimisation Scenario

WiDelay Weight of Delay for Application i

VVl.Rdmbimy Weight of Reliability for Application i

X Mean values of parameter x

Chapter 1

Introduction

1.1 Research Context

The concepts of Industry 4.0 provide a new means of integrating concepts from ubiquitous
computing with manufacturing technologies through cybernetics. This advances the automa-
tion of the manufacturing systems and helps improve product quality, production efficiency,
condition monitoring and decision making (J. Lee, Bagheri, and Kao 2015; DIN 2016).
Within this concept, machines become connected with humans through computer systems to
work in a coordinated way to automate data acquisition, sharing and exchange among the
physical and virtual worlds.

The wide spread availability and affordability of sensors, wireless networks and the
accessibility of high speed Internet makes real-time multiple parameters monitoring and
control of manufacturing process possible in a way that was not feasible before (Y. Lu
2017). This leads to a great number of sensors being deployed to physical machines which
in turn generates a large volume of data that requires computationally intensive analysis
and interpretation for decision-making purposes. The resulting decisions, whether made
by humans or software, often needs to be transformed into control signals for actuators to
operate the machine in the physical world. This then creates a loop-back to the sensor system
as new sets of data are collected and sent back for further analysis, reflecting changing
machine states over time.

This type of system based on Cyber-Physical System (CPS) is a facilitator for realising
the concepts of Industry 4.0. It enables computational algorithms and physical components
to interact with each other through real-time monitoring and control to improve productivity
(Trappey et al. 2016; L. Wang, Torngren, and Onori 2015). Yet, as stated in (Wiesner,
Marilungo, and Thoben 2017) traditional servers with limited capacities may not be able to

cope with the new challenges in terms of scalability and complexity of such systems. In turn,

2 Introduction

the cloud with Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software
as a Service (SaaS) provides a promising integrated solution (Mell and Grance 2011; Chaari
et al. 2016) to address these challenges.

However, the cost of using cloud services and the latency between the edges of the
network and the cloud could hinder its application to time critical applications. Furthermore,
due to health and safety issues, some machines cannot be operated remotely and can only be
operated within particular boundaries at the premises (Health and Safety Executive 2004).
Besides, in some cases the control software and the machine are bundled together due to
security, license and driver requirements, so it cannot be run on the cloud or other machines.
On the other hand, the computational power or other resources on the controllers may
have spare capacity to process additional tasks. The study of assigning these existing extra
resources to time sensitive tasks and overloaded computer systems becomes an interesting
alternative to cloud processing (Deng et al. 2016; Jiang 2016). Such systems as part of a
network infrastructure could efficiently deal with front line demands (Bonomi et al. 2012a).

The fog environment is an extension of the traditional cloud to the edge of the network
including both cloud and edge resources. In Cloud computing environments, the physical
machines are considered to have mostly homogeneous builds with network latencies inside
clusters small enough that the deployed location of applications is not considered. In Fog
environments, locality is considered to be an important issue, due to the heterogeneous build
of nodes, the higher communication latencies inside a wireless network and the physical
lock-in of device resources. These differences between Fog and Cloud approaches introduce
the need for a new workload descriptor for a PaaS based Fog. Furthermore, in CPS systems
the importance of device to application communication needs to be considered. These require
the formulation of a new Application and Gateway Model as well as new optimisation

approaches that can address the differences between these systems.

1.2 Research Problem

So far, only limited numbers of optimisation and load balancing approaches such as (Do
et al. 2015) have been proposed in the context of fog computing and CPS. The existing
approaches (Mahmud and Buyya 2016), however, focus on the design of optimisation
methods using different simulated parameters such as workload, power consumption and
virtual machine distribution. These approaches also lack physical environment testing, only
considering theoretical formulas for delay and processing that can only be implemented
with full knowledge of the applications and the systems that is not always possible. There

are few studies (Diaz, Martin, and Rubio 2016) on application properties such as coupling

1.3 Research Aims and Objectives 3

nature between devices/drivers and controller/gateway. Such properties can lead to extra
communication delays, depending on distance between devices and gateways. The existing
approaches (Mahmud and Buyya 2016) are mainly interested in the overall or average
workload balancing without considering individual message response time, which can be
crucial for CPS.

Based on these deficiencies in the current state of the art and based on the possible

prospects of future industrial requirements the main research question can be summarised as:

e How can large application systems deployments be analysed and improved in highly
heterogeneous Fog environments ?

To be able to answer this, a broad question a set of more precise questions that would
help define how these systems look, what should be improved and analysed and furthermore
it will assist in defining what are the big challenges of accomplishing this. These questions
are as follows:

e What are the requirements and characteristics of future Industry 4.0 Gateways and
how can these be translated into protocols and systems?

e How can changes in the model be analysed and estimated using the run-time pa-
rameters and connections of the applications and gateways?

e What are the challenges of application deployment in Fog systems and what meth-
ods can be proposed to diminish their effects?

These questions were used when formulating the research aims and objectives in the next

subsection and form the basis of the validation and the chapter orchestration as well.

1.3 Research Aims and Objectives

The research aim can be defined as the broad challenge of this work and is stated below.

Formulate, implement and evaluate an IoT and Fog based Application Deployment
Framework for Industry 4.0 systems

The objectives can be described as steps that need to be taken to fully answer both the
main research question and the more precise questions that make it up. Due to the nature of

the work the objectives can be split up into three categories, Platform, Model and Method.

4 Introduction

Each of these looks at distinct components of the big framework.
Platform

e Provide a high level framework for and IoT based Fog Platform that can satisfy the

requirements presented of the current State of the Art.

Implement the framework using existing technologies and protocols.

Model

Analyse the Platform, identify relevant parameters and determine their behaviour.

Formulate the platform model taking into account numerous heterogeneity components.

Identify system specific behaviours and constants, validating these.

Method

Analyse the optimisation problem determining its hardness and propose directions for

improvement.

Formulate methods that take advantage of system characteristics to meaningfully reduce
the search-space for the optimisation methods.

Evaluate proposed methods to identify advantages and disadvantages together with desired

use-case scenarios.

The objective are translated into upcoming sections of the thesis where each set of

objectives is grouped into a chapter and validated in Chapter 7.

1.4 Novelty and Contribution

The main contribution of this thesis are the weighted clustering methods that aim to solve the
scaling challenges of future large-scale fog deployments that were based on the identified
characteristics, models and challenges of these systems.

When considering the Fog of Things Platform, its main contribution can be summed up
by the formulation of the Fog of Things paradigm and its implementation or architecture
proposal based on existing and modified protocols and systems. The paradigm shift can
be summed up by considering connected devices as resources and the attempt to create a

homogeneous application environment on top of a highly heterogeneous system.

1.5 Thesis Structure 5

The novelty and contribution of the Application and Gateway model lies in its data and
system driven formulation where only measurable parameters are considered and the full
heterogeneity of the system is taken into account. This results in a model that can be deployed
in existing systems and can make prediction in these rather than just theoretical calculations.

Within this framework each components has novelty elements, but the deployment
optimisation method provides the most novelty with the highest impact. This component
focuses on the creation of clusters to meaningfully reduce the search-space in the system.
The weighted property based clustering and resource allocation as well as the identification

and training of these weights is at the centre of this work.

1.5 Thesis Structure

The thesis structure follows the structure of the objectives and the research questions where
each question and objective set in answered in a Chapter. These chapters are preceded by
background and overview information chapter and followed by their evaluation and the
conclusions of the research.

The thesis is structured in a logical way based on the proposal, where the whole thing can
be considered a framework which has a Platform , a Model and an Optimisation method in it.
This structure is followed in the Research Background section and throughout the thesis and
in the Evaluation as well.

The Fog of Things Platform, the Graph Analysis of the System and the proposed Gateway
and Application models have been published by our research team in the course of the
ongoing research for the PhD, having myself as the main author. These have been linked in
the Published Papers section and certain paragraphs and sections from these were included
in the Literature review, Introduction, Body and Evaluation chapters.

Chapter 1 - Introduction aims to give a general introduction to the thesis. It also
contains a highlight of the major contributions, components and research questions.

Chapter 2 - Research Background looks at giving an overview of the existing state of
the art in this domain an what direction and aspects of solving each problem was considered
and what work these are based on.

Chapter 3 - Methodology provides an overview of how the research was conducted
and which were the main components that needed to be completed to fulfil the requirements
and answer the questions.

Chapter 4 - Fog of Things Platform describes the proposed platform, its components
and what are the theoretical and practical aspect of implementing these. This section also

6 Introduction

looks at some of its characteristics and the shift in paradigms with the inclusion of Things in
the Fog.

Chapter S - Application and Gateway Model formulates the model for Application
and Gateway delay, load and reliability calculation that support the system health and the
utilities calculations. This is built on the previous chapter and provides a means of doing the
optimisation in the upcoming chapter.

Chapter 6 - Deployment Optimisation showcases the components of the optimisation
methods as well as different variants of it. In this section these components are described
together with the 4 main configurations that are being tests. This chapter builds on the
previous two and provides the main contribution of the thesis.

Chapter 7 - Evaluation and Analysis section evaluates and analyses the components,
models and the platform presented in the previous three chapters. Its purpose is to provide a
systematic review of the proposed ideas and show their drawbacks and advantages as well as
provide a typical use case for these.

Chapter 8 - Conclusions and Future Work summarises the whole thesis and its
findings, looking at what were the initial questions aims and objectives, how these were

answered and what was found during this work.

Chapter 2

Research Background

2.1 Internet of Things

The concept of ubiquitous sensing and computing is slowly becoming a reality with enabling
technologies like Wireless Sensor Networks (WSN) and the wide spread adaptation of cloud
computing. These advancements, as well as innovations in the fields of Radio Frequency
Identification (RFID), advancements in Wireless technologies like 4G and the introduction
of low powered microelectronics that enable wireless communication, sensing and actuation
control in microchips as well as System on Chip (SOC) devices have contributed to the
emerging field of Internet of Things (I0T).

The realisation of the IoT would represent the advancement to web3 (ubiquitous web)
as described by (Gubbi et al. 2013), where Smart Objects and Devices will be seamlessly
embedded in their surroundings. Implementation of such a concept gives rise to a new set of
challenges, such as uniquely identifying Objects in the system, to gather, interpret, store and
visualise the data, and be able to manage security, faults and billing requirements for such
devices.

There are numerous visions for a functioning framework for the IoT, these can be split
into three main categories: Thing Oriented, Internet or Middleware Oriented, and Semantic
Oriented. A generic overview example can be seen in (Hakiri et al. 2015). Each of these
approaches have their own advantages and disadvantages. These categories focus on the
categorising IoT systems based on their Architecture. Some systems might incorporate ideas
from two or more of these categories to accomplish their objectives.

A Thing oriented approach can be seen in (Gubbi et al. 2013) where the authors give a
definition to the 10T as well as define its requirements, together with use cases and proposed
architecture on both public and private clouds. This approach envisions object that are

connected to a network which can interact with their environments through sensing and

8 Research Background

e @
“U‘
: ‘ I 235
: L«b ;
| . - I:.mspmt.ttmn
: Satellite : y. ‘%n‘mr‘r
o : : : s Meter
Applicagions | - ' ; ;
] Y Y
' .
!]
L
&£
*‘%\:\‘ J
NG T
Client Access

Applications Network

Smart Sensors

" Application Network M2M Device
Domain g Domain é Domain

Fig. 2.1 (Hakiri et al. 2015) Overview of IoT Vision and Architecture

actuation as well as communicate with peers and analyse data. The authors see this step as a
“move from www (static pages web) to web2 (social networking web) to web3 (ubiquitous
web)”. A Semantic based approach is discussed in (Gyrard et al. 2015) where Gyrard et al.
define the requirements of such an approach as well as analyse current contributions to the
field while defining their limitations and constructing a new architecture. This approach is a
data oriented one, where the focus is on abstraction of tasks with emphasis on communications
and the transfer of data and interpretation of information.

A Middleware Oriented approach can be observed in (Distefano, Merlino, and Puliafito
2015) and (Sarkar et al. 2015) where the main focus is on the layers and architecture that
controls the devices using different virtualisation policies to make the devices available
in the network. In (Distefano, Merlino, and Puliafito 2015) they envision a system where
the “lower level functionalities” are separate from the network which would be a Software
Defined Network (SDN). In article (Sarkar et al. 2015)they define a layered design that adds
a virtualisation layer on each level that connects the devices with the application.

2.2 Fog and Cloud Computing 9

2.2 Fog and Cloud Computing

The interconnection of sensor and actuator systems with decision making and analytics have
traditionally been performed by either local static controllers or sent up to the cloud for
analysis. Through the paradigms of Internet of Things (IoT) cloud computing based systems
propose the virtualisation of devices and provide their data and connection as a service
for users within a Sensing and Actuation as a Service (SAaaS) as proposed in (Distefano,
Merlino, and Puliafito 2015) or Things as a Service (TaaS) in (Christophe et al. 2011).
Another role Cloud computing has in CPS is focused on the analytics of the data received
from devices. The Cloud can provide a vast amount of processing and storage resources (Fox,
Kamburugamuve, and Hartman 2012) which can be used to analyse large amounts of data
(Zhang et al. 2017) or streams (Hossain et al. 2012). These cloud capabilities are focused in
data centres (Rui and Danpeng 2015) which are centralised and have a remote nature, which
has several drawbacks. The security aspect of storing, analysing and managing data in the
cloud is an increasing concern (Botta et al. 2016), while the remote nature of the cloud also
has reliability and latency issues (Stojmenovic 2014).

The paradigms of Fog Computing as proposed by CISCO in (Bonomi et al. 2012b) extend
the cloud to the edge of the network to better utilise resources available on gateways and
devices connected to the network (Cisco Systems 2016). This extension allows data to be
stored and processed locally increasing reliability and security, while decreasing the latencies
between devices and the processing elements (Dastjerdi and Buyya 2016). The hosts or
gateways used in fog systems vary from PC based Computing Nodes (Aazam and Huh
2014), Mobile Devices (Hong et al. 2013) and resource constrained System on Chip Devices
(SoC) (Jalali et al. 2016). These hosts all have varying storage, processing and networking
capabilities (Giurgiu et al. 2009). While compute nodes have the most resources and are
the most reliable these usually communicate with devices using Ethernet or WiFi based
networks. Example of such a system can be seen in (P. Verma and Sood 2018). The mobile
device and SoC based devices have fewer resources but provide a wider range of wireless
communication possibilities for polyglot gateway (Datta, Bonnet, and Nikaein 2014), that
can be used to connect to a wider range of heterogeneous devices that can use low-power
Machine to Machine (M2M) communication protocols.

The platforms deployed in fog computing vary based on hosts and application domain, but
they can be categorised in a similar way as in cloud computing. Infrastructure based solutions
allow users to deploy Virtual Machines (VM’s) (Luiz Fernando Bittencourt et al. 2015) or
Docker Images (Bellavista and Zanni 2017). Platform based solutions as in (Al-Fugaha
et al. 2015; Khodadadi, Calheiros, and Buyya 2015; Paraiso et al. 2012) provide a platform
for users for application style system deployments. The third type of platform as shown in

10 Research Background

o

S Smart Communication Py S gl ~
Ambulance 3y / Services”
Conventional Communication ;¢ Hospio W, _ s e

o

-
-

o] ‘ =~
Feedback Based |
Processing :

Responder
3 [P - .

Fog data % R

TR - L Cloud

services % J e

¥ ! Fog 3

Smarth
N Gateway’ "5

c:\ Fog2 }
& ,’ an 1 b4
-~ "'-;-::
Q GPRS / WiBro / e
W'F' /3G /4G GPRS / WiBro / "-Q
' WiFi / 3G / 4G M
Sensor bm\m ! Sme v Sensor 4 e Sensor
’\’Ll\-\m k l;‘n’ Network 1,};! Network o, 'Vtt\mrl\ = gl :;}-:\ Network
& i ; o) . e 3
'j j] ey = . 2\ >
Home 1 l[-llumf;’l —1— ———————— Home n Home 1 ey TR
ocation ocation
- > « >

Fig. 2.2 (P. Verma and Sood 2018) Example of Fog Environment

(Gyrard et al. 2015; Z. Li 2016) provides networking and analytics capabilities that the user
can only configure and use without the need to program and deploy their own application or
platform. Some Cloud solutions also focus on the interconnection and management of these
services as in (Kum et al. 2015)

From the hosts perspective there are a number of differences between Cloud and Fog. The
main difference is the resources of these hosts, while Cloud is considered to have a virtually
unlimited amount of storage and processing capabilities (Aazam, Khan, et al. 2014), in the
Fog these resources are a lot more restricted so their optimal management is crucial (D. Kim,
C. Lee, and Helal 2015). When looking at inter-host communication in the cloud, due to
high speed networks these delays as uniform and negligible. In the Fog, due to wireless
communication and varying network types these delays can vary largely between hosts and
their size increases dramatically (Gupta and Garg 2015). When looking at device to host
communication the Fog is closer to these devices while the Cloud adds significant networking
delays when accessing remote devices. When looking at the differences from a platform

perspective, the Cloud solutions offer full control of resources using VM'’s, Docker style

2.3 Industry 4.0 Requirements 11

solutions or other Platform as a Service (PaaS) options. Fog solutions tend to share resources
between different users and systems.

Cloud based CPS and IoT systems are typically designed using smart internet enabled
devices that connect to cloud services using either Message Queue Transport Telemetry
(MQTT) (Truong and Dustdar 2015; Singh et al. 2015) or Constrained Application Protocol
(CoAP) (Kovatsch, Lanter, and Duquennoy 2012). These devices have higher power con-
sumption and require more resources to run due to the security and protocol requirements
than their Machine to Machine (M2M) technology based counterparts. In Fog systems these
smart devices are replaced by gateways that have significantly more resources and use more
power, but they are connected to devices using, Bluetooth Low Energy (BLE), Zigbee or
other M2M specific protocols (Rahmani et al. 2015; W. Lee et al. 2016) that are more power
efficient. Hybrid systems as in (Jayaraman et al. 2014) suggest moving real-time sensitive
components closer to the edge or in the Fog while leaving resource intensive processes in
the cloud. This can be seen with data-stream processing as well in (Baccarelli et al. 2016)
where initial analysis is performed on gateways and the data is sent up to the cloud for more
in depth analysis. In all of these cases the decision to move from Cloud to Fog is based on
design choices that are influenced by processing requirements, distributivity of data and the

real-time requirements of the system (Stojmenovic 2014).

2.3 Industry 4.0 Requirements

In recent years there has been an increased interest in the development of manufacturing
systems that allow the monitoring and control of certain parameters, which can respond
to faults, be reconfigured, easily deployed and upgraded. Some of the main features and
requirements of such systems are presented in (Lasi et al. 2014). The research in this field
has resulted in a number of directions such as Cloud Manufacturing, IoT logistics, Smart
Manufacturing and others that have at the core the Automation of manufacturing tasks, the
synchronisation of device usage and diverting more of the management and organisation
tasks from humans to a management system. An overview was presented in (Barreto, Amaral,
and T. Pereira 2017).

There are multiple problems and directions that can be taken to create a fully Automated
Manufacturing Environment. One of the components is the orchestration of resources that
are needed to make products, reducing Time to Market, manufacturing times and idle devices
and resources. A cloud computing and Enterprise Model based solution is presented in (Bi,
Da Xu, and Chengen Wang 2014) that focuses on the management of resource components of

12 Research Background

End-2-End loT-Enabled loT Service loT Service
Digital Manufacturing Implementation Operation
Engineering Top floor
= () %

9) Embedded | Cloud (10)

e
1 [

App Store/Digital Ser\iices (2)
\

cPs « i Product Usage Data (3)
(y Shopfloor ‘.‘
De-Coupling. =0 0
\ Product Memory 0¢ m“\ \ ‘ \
\ ‘ \ - \
\ [|

1
[\
) i
\
(]
!

\ \ - \ 5 \
1 v _\ r‘r-\., o r’o 1 '\\ 1
1 -) 1
” 1=~ @ s T L) g e
! i Robots i 'r 1
! ; 3 o IR @ @ Products (1) 7
i

D - I
] ! (j Oj @ Printing «"OT”TF‘):O 3 Intelligent ‘.‘
r I)

i
f

i

Powertools Remote Monitoring,

; / Batch-Size One (7) : ‘ Predictive Maint.(12)
e ey ——— N P — R ———
Servitization (4) /J
353 1]
Product -
Customization (5) ﬁ -

Sales/Marketing Work Environment Adaptive Aftermarket
& Business Models Logistics Services

Fig. 2.3 (Barreto, Amaral, and T. Pereira 2017) Industry 4.0 Use-Case

the cloud based manufacturing, allowing delivery and deployment models to be implemented
based on known characteristics.

Other research (Bi, Da Xu, and Chengen Wang 2014) focuses on the technology com-
ponent of the system that allows devices from different mediums to send information in a
heterogeneous system decomposing the system into multiple levels abstracting unneeded
information at each level while at the end ensuring the Mapping and Access to resources
through manufacturing services in a (Service-Oriented Architecture) SOA system offering a
Service Oriented Manufacturing (SOM) solution. Finally the platform presented in (Tao et al.
2014) suggests the collaboration of a number of higher-level systems such as the [oTs for
resource management and orchestration, the Internet of Users for requests and tasks and the
Internet of Services (IoS) for Cloud resource utilisation.

The proposed gateway platform would perform the tasks of the [oT component while
overflowing into the IoS region allowing the use of local resources to increase the configura-
bility and Quality of Service (QoS) specifications of manufacturing systems. Furthermore,
from an industrial management point of view the gateway platform would allow the fast

reconfiguration of systems to decrease the time to market and allow for a higher flexibility in
industrial production.

2.4 Gateway and Middleware Platforms 13

2.4 Gateway and Middleware Platforms

IoT gateways have become increasingly configurable and their functionalities have expanded.
The horizontal integration directives aim at allowing platforms and devices from different
providers using different protocols to interact. This would increase re-usability and reduce
application complexity. To allow the connection of multiple devices multi-M2M protocol
support, registration, management and an enhanced configurability is needed for these devices.
The increased number of resources available on the gateway has led to the need to be able
to virtualise these and move a portion of the resource use from the cloud to the edge of the
network.

When discussing the IoT, three distinct approaches for the architectures of such systems
(Fortino et al. 2014b) can be considered. An IPv6 based network where devices are uniquely
accessible through Constrained Application Protocol (CoAP) or other lightweight protocols
has been suggested in (P. P. Pereira et al. 2013), while in the cloud oriented approach
devices are accessed through API’s (Fox, Kamburugamuve, and Hartman 2012) or using
Message Queue Telemetry Transport (MQTT) protocol. The middleware approach is based on
gateways or brokers that communicate with devices through more lightweight communication
protocols such as 6LoWPAN, nRF24L01 or ZigBee and forward these messages to the cloud
or other clients such as in (Sarkar et al. 2015).

With the introduction of Cloud and Fog Computing paradigms, the use of resources
available at the edge of the network is considered as well as the deployment of application and
processing tasks on the edge devices (Chao et al. 2015). Proposals like MADCAT in (Inzinger
et al. 2014; Kovatsch, Hassan, and Mayer 2015) suggest large applications be decomposed
into components and deployed onto devices while (Khodadadi, Calheiros, and Buyya 2015)
suggests a MapReduce like approach with IoT application development. Together with
proposals from (Ruckebusch et al. 2016) which looks at reconfigurable components and
(Fortino et al. 2014a) which looks at agent based cooperative smart objects, these suggest a
need for Software Defined Networking as well as the need of decomposing applications into
components and running them on the gateway.

The idea for the use of resources on the edge of the network was first introduced by
Cisco (Bonomi et al. 2012b). Advances in Networking as a Service (NaaS) and the increased
processing power of gateway devices have led to the development of edge computing
platforms like Docker (Ismail et al. 2015). Edge computing includes solutions based on
Virtual Machines (Vogler, J. M. Schleicher, et al. 2015; Vogler et al. 2016) as well as
container based application deployment solutions.

Open Service Gateway Interface (OSGI) is a modular service platform for Java that has
been the focus of research towards modular [oT Gateways. OSGI can be used for multi-tenant

14 Research Background

cloud connection architecture as in (Azeez et al. 2010). Platforms like HEPA (Seo et al. 2015)
propose the use of Zookeeper to control a set of OSGI Gateways that would facilitate the
transmission and translation of device information. One of the drawbacks of the OSGI core
platform is that it lacks solutions for asynchronous communication between components. To
address this issue (Koschel et al. 2012) and (Sivieri, Mottola, and Cugola 2016) proposed
an a messaging based solution that maps messages to either internal services or to an event
administration system component.

There are a number of different approaches to the design and implementation of IoT
gateways. Most of the initial approaches as well as some of the latest ones like Eclipse Scada,
Krikkit, SmartHome and HePA (Seo et al. 2015) concentrate on semantic interpretation
of data and configuration based routing or event creation. Other approaches like that of
Kura and Eliot look at fully reconfigurable systems where applications configure and define
everything, a fully modular system. These approaches cause platform and provider lock-in
where information passing between peers is problematic. Solutions like BUTLER (Botella
et al. 2009) and the use of eTrice provide an abstraction of protocols to enable an easier
application development. While eTrice (M. H. Orabi, A. H. Orabi, and Lethbridge 2016)
generates Java or C code based on the written code, Butler deploys the run-time environment
directly onto devices, which allows the user to review the written code. Most of the presented
gateways have very limited solutions to certain aspects of gateways like reconfiguring
and reprogramming connected devices to suit the needs of the users. Proposals like GITAR
(Ruckebusch et al. 2016) provide a platform that can reconfigure embedded devices connected
to it. In summary, existing platforms all focus on specific aspects of [oT gateways, allowing
certain aspects to be configured or reprogramed and some also allowing for applications to
be deployed on them. A functionality based summary review can be seen in Table 1 where
the differences between the gateway platforms are highlighted based on 6 criteria.

Due to the differences in processing and storage resources of IoT devices there is a wide
range of tailored M2M protocols. The higher level protocols like CoAP, SNMP and MQTT-
SN are used on devices that have higher processing and power resources available. More
resource constrained devices use protocols with lower levels of abstraction and functionality,
such as 6LoWPAN, XBee, RF24 or even core 434 MHz,each having their preferred imple-
mentation scenarios and varying advantages and disadvantages. This protocol fragmentation
has led to increased research regarding the brokering and semantic translation of received
messaged from the existing protocols such as in (Al-Fuqaha et al. 2015). Architectures like
Krikkit and BUTLER look at mapping to REST requests with notification feedback. In
contrast, BUTLER attempts the handling of asynchronous requirements of IoT Systems with

the use of a Messaging service that provides this implicitly. The solutions like Kura and

2.4 Gateway and Middleware Platforms 15

Table 2.1 Platform and Middleware Features

. Multi Multi Deployable Protocol Local

Gateway Horizontal .
. M2M Cloud App Agnostic ~ Resource
Platform Integration . .
protocol Tenancy Layer Messaging Use

Krikkit X X - - X R
SCADA - X - - - R.,S
Kura — X — X X PN.S,O
SmartHome - X - - - PR
eTrice X X X X - PR
HePA X X X - X PN
BUTLER X X X X X PN
GITAR X - - X X PN
ELIoT - - X - X PN,S

*P-Processing R- Message Routing, N- Full Networking, S-Storage, O-Other

ELIoT use MQTT as a messaging service with the cloud and translate all device messages to
MQTT. The drawback of most of the presented solutions is that while they offer a uniform
and configurable communication means with the cloud, they do not provide a protocol
agnostic message passing system for applications and device messaging.

The management and northbound or cloud oriented connections of the gateways have
a number of approaches that can be used. Gateways like Krikkit, Eclipse SCADA, Kura,
SmartHome and BUTLER all use RESTful APIs and User Interfaces to control and manage
them. Platforms like Kura and Krikkit allow for MQTT cloud connections to be configured
for message passing. BUTLER allows for multiple cloud tenancies through connections
made through the REST APIs which can connect to local area and cloud resources as well
as other smart devices. Approaches like HePA suggest proxying through CoAP for passing
of control and device data between gateways. While these approaches allow for some basic
networking configuration they lack a truly software defined networking platform that would
support the configuring of multiple networking connections that not only allow message
passing but management and application deployment as well.

The requirements for the horizontal integration of devices has become evident in the past
years with an increased amount of platforms switching from a vertical view, where platforms
have their specific protocol and device support, to a more horizontal one, encapsulating
different protocols and device connections from other providers. This is leading to an
increased interconnectivity and the use of multi tenancy connections for features available
from different providers. Most of the presented platforms like Kura only allow one MQTT
connection to be configured. While applications can implement the drivers and have their

16 Research Background

own connection, this is not implicit to the platform. BUTLER provides the most extensive
support for this, supporting multiples types of devices like smart phones, local computers,
gateways and cloud connections. In general however, these platforms provide a mostly
vertical view of the system with connected devices and messages still being confined to their
respective gateways and these needing to be updated and deployed independently. There
is a requirement for a more loosely coupled connection among devices, applications and
resources, where these applications can pass messages seamlessly from different containers
to devices connected to other available gateways without needing to be rewritten. This would
allow for functionalities like migration, clustering and high availability to be explored for
these gateways which could lead to higher quality of service (QoS) standards.

The use of resources at the edge of the network is one of the main concerns of Fog
Computing as described by Cisco (Bonomi et al. 2012b), with the use of processing and
networking resources being of main concern. Some platforms suggest deploying VMs such
as in ELIoT or allow the users to configure the data processing as with the Krikkit, SCADA
and SmartHome platforms. Solutions like Kura, eTrice and BUTLER suggest the deployment
of applications onto these gateways which allows for faster deployment and more efficient
use of resources but constrains the users to platform or language whereas VMs allow for full
control of the environment. Although the storage resources available on the gateways are
rarely discussed, there is research where the use of software like CouchDB and PouchDB for
Fog computing devices is evaluated (Kimak and Ellman 2013). In these scenarios, device
related information is stored locally and updated with the cloud when needed. Context
resources are made available to applications which may include location as in Kura or region
information as made available in HePA. A more comprehensive view on how to manage these
resources is needed as well as a need to be able to combine resources management systems
from different languages and platforms. Based on the review of the existing platforms as
well as the direction of the IoT community, it can be concluded that there is a need for more
horizontal integration of gateways as well as a need for a protocol agnostic messaging system
for applications to talk to devices. Furthermore, in evaluating the current platforms it is
obvious, that certain aspects have received a lot of attention and have had good solutions,
especially in the case of BUTLER, but there is still a room for improvement. The resource
availability and use by gateway applications, as well as in the creation of protocol agnostic
and event based device messaging environment for the applications are key issues for the
development of future platforms. In addition to the platform lock-in created by a vertical,
single platform approach for most of the existing systems, device and protocol dependent

solutions create a big impediment for application development for devices from multiple

2.5 Application and System Model 17

providers and protocols that provide similar functionalities, reducing the capabilities and
reusability of such systems.

If gateways are to cope with the proposed interconnectivity and the wide range of devices,
use cases, protocols and QoS requirements of future environments, they need to be able to
connect to multiple cloud providers that may offer different data processing, storage and meta-
data analysis tools and features. Furthermore, these gateways need to allow for migration
and clustering while maintaining device communication and application persistence within
the cluster and the fog. Current approaches fail to provide an application environment
to decouple deployment and messaging which is partly due to a lack of M2M protocol
abstraction. They also fail to provide a virtualisation layer for applications that allows
complex application deployment using the resources of a set of gateways rather than the
limited resources from single gateway. This becomes a particularly big issue for use cases
where a highly interconnected and constantly reconfiguring environment is in place such as
in the case of Smart Office and Home scenarios as well as Industrial Monitoring and Control

applications that involve task and project based reconfiguring of the system.

2.5 Application and System Model

The novel gateways proposed by combining the concepts of 1oT and Fog computing are
deployed in a system that is highly heterogeneous both in its geographical distribution and
density and in the characteristics of both the applications and their host nodes. The host vary
from highly heterogeneous edge networks with reduces resources to cloud nodes that can
be considered as having endless resources. The introduction of these concepts promises to
reduces delays increase reliability and improve security as well as provide better resource
utilisation. In order to achieve this however, services or applications need to be deployed
as optimally as possible. Before this can be achieved however, there is a need for the
requirements of such systems to be analysed and models to be put up so each the health
of each individual service or application as well as the systems health can be evaluated,
monitored and estimated. An attempt of finding the platforms general characteristics is done
in (Cruz et al. 2018) where they do not provide a mathematical model that can be optimised
but rather a collection of all the characteristics that can be considered when considering
Gateway based Systems. The proposal in (Jim Zw Li et al. 2011) provides a model that can
account for several parameters in a multi-goal model. A combination of models that can
account for goal heterogeneity as well as multiple parameters is crucial for these systems.
The types of models proposed by researchers are linked to the optimisation attempt they

have and the context they are using these models in. Cloud and Edge applications require

18 Research Background

different models while Fog use-cases require both to be considered. Some research focuses
on providing very accurate but narrow models while others seek to encompass different
parameters but using simple methods. The issue of latency is a key factor in fog computing
having numerous papers written on it. The authors in (Bauer, May, and Jain 2014) a real-time
gateway approach for industry 4.0 where they seek to model the latencies in the Ethernet
system through the slave and master components. The framework in (N. Wang et al. 2017)
is built on the idea of optimising resource use while reducing latencies in the system by a
reported minimum of 20%. This is done through their model of deploying services to the
edge nodes that are closest to the users. The work done in (Intharawijitr, lida, and Koga
2016) focuses on modeling 5G network based systems to reduce communication latencies
through the fog model. Their approach looks at varying latencies and types of connections as
well.

Other approaches may include reliability, energy, QoS improvement or SLA compliance
and even pricing calculation and reduction. The framework proposed in (Osanaiye et al.
2017) looks at providing a live-migration backbone for Fog environments based on VM, and
seeks to model the Reliability and Availability of these. The computational offload technique
in (X. Chen et al. 2016) looks at offloading code and workloads from the cloud to the edge in
such a way that they model latencies, computational energy and overhead. The work done
(Zeng, Gu, and Yao 2018) proposes a more advanced energy estimation model that focuses
on computational and networking costs, as well as seeks to minimise these. The approach
in (Congjie Wang et al. 2017) focuses on multi-cloud deployment through modeling QoS
compliance. They also propose optimisation algorithm for both global and load balancing
deployment styles. The model in (Aazam and Huh 2015) looks at methods of estimating
costs related to deployment in fog datacentres based on resource estimation. It attempts to
calculate resource scarcity and use and is evaluated using the CLoudSim toolkit.

These models can differ in their application environment as well. Some are designed
to work in a way where applications are considered to be deployed one after another or
in some cases little or no information is known about these linking components. Load
balancing approaches usually look at applications and they components as a subset of tasks
or workloads totally independent of each other that need to be allocated within a time-frame
satisfying some criteria. The authors in (Minh et al. 2017) look at decomposing applications
into their tasks to better deploy them on both fog and cloud nodes. Their model focuses
on source and resource utilisation modeling. The proposal in (Skarlat, Kevin, and Schulte
2018) proposes a workload view of services where they are deployed on the fog and cloud
system with full knowledge of their demands. They look at deployments where response

time constraints are not violated and the reduction of the total execution time. These can be

2.6 Deployment in the Fog 19

can be categorised by a simple and easy to implement light-weight model that is being used
in conjuncture with greedy or first-fit algorithms. The work in (Taneja and Davy 2017) looks
at resource utilisation and latency modeling and global deployment. Their model is designed
to consider all the connections and the algorithms are designed on top to find the minimum.
The drawback of such approaches is that the resulting model that needs to be optimised
creates and NP-Hard problem in most cases. The proposal in (Intharawijitr, lida, and Koga
2016) attempts to minimise a connection graph of components deployed in a system which
follows the global deployment direction.

The presented models all vary in how complete they are, in how accurately they describe
the systems they attempt to model, and how complex these systems are in real life. Cloud
based systems typically require simple models as they are considered mostly homogeneous.
The fog or edge based counterparts are usually more complex and consider different variables
as they are more heterogeneous in nature which makes creating such models more difficult
but also gives more opportunity to improvement. Solving the minimum of systems using
some of these models as in (ibid.) results in an NP-Hard problem which is a main concern
for deployments as their scalability is affected by a non-polynomial increase with size. A
trade-off of complete models and complex models needs to be reached where the models are

complete enough to be accurate but do not fall into the NP-Hard problem category.

2.6 Deployment in the Fog

Several CPS clouds have been proposed to enhance the functionalities and alleviate some
barriers in CPS development (Chaari et al. 2016). However, latency is one of the inherent
challenges in cloud computing, and this issue limits its use in time-sensitive applications.
CPSs often work in a dynamic environment having a mixture of urgent, unexpected, and
periodic events with hard and soft real-time constraints. This means the cloud approach may
be inadequate for CPSs (Garcia-Valls, Cucinotta, and C. Lu 2014).

The core concept behind Fog Computing optimisation is to improve efficiency of resource
utilisation throughout the system. Load and Delay optimisation as suggested in (Dhinesh
Babu and Venkata Krishna 2013) is imperative for time-sensitive CPS applications and has
become an important field of research for managing resources in Fog environments. The
use of OSGI and similar resource sharing platforms for application deployment compared to
Container and VM based solutions offers new possibilities but also creates challenges due to
increased interdependence.

When considering Application deployment in either Fog or Cloud environments there

can be two approaches to solving the problem. Load Balancing techniques focus on Online

20 Research Background

or on-the-fly optimisation where requests or changes need to be satisfied as they arrive
and reaching a solution in an allocated time set and having an acceptable solution is more
important than having an optimal or improved solution (Sivieri, Mottola, and Cugola 2016).
The second method focuses on Global optimisation where a known set of initial requirements
and set-ups are given as well as workloads and system configuration and a solution is required
to deploy all of these on an system as a whole. These methods can be used interchangeably

or can build on top of each other .

2.6.1 Load Balancing

Various resource management strategies and algorithms have been studied for decades in
a variety of scenarios and it is well understood area in general distributed systems and
cloud computing. However recent years have witnessed that researchers are moving their
focus towards load balancing optimisation for cloud-fog systems. The key question in load
balancing optimisation is how to allocate jobs on various machines so that each receives its
fair share of resources to make progress while providing good performance (G. Lee, Chun,
and Katz 2011).

The studies conducted by (Lucas-Simarro et al. 2013) and (Zhan et al. 2015) provided
comprehensive survey of various techniques for load balancing optimisation for cloud
computing. The load balancing optimisation mechanisms used in managing resources in the
cloud computing can be broadly divided into virtual machine (VM) based, QoS, and energy
etc. (Hu et al. 2010) presented an algorithm for load balancing optimisation of VM resources
by using a genetic algorithm. Their proposed algorithm attempts to reduce migration cost
of VMs using historical data and current state of the system.(Zhao et al. 2013) presents
the design and implementation of an algorithm that employs the Pareto dominance theory
and simulated annealing to achieve a long-term efficient power saving and load balancing
optimisation. (Dhinesh Babu and Venkata Krishna 2013) proposed an algorithm to achieve
load balancing across VM'’s in order to maximise and balance the priorities of tasks so that
the amount of waiting time of the tasks is minimal (Trappey et al. 2016). A task scheduling
algorithm for load balancing optimisation based on QoS, proposed in (Wu et al. 2013),
computes the priority of tasks based on some specific attributes and evaluates the completion
time of each task and then schedules each task onto a resource, which can complete the task
according to the task priority. In (Ramezani, J. Lu, and Hussain 2014) the authors propose a
new load balancing optimisation method that uses Particle Swarm optimisation to balance
system load by transferring tasks from an over-loaded VM to less loaded one.

Through application of various algorithms, these approaches revolve around optimal task
distribution on various VMs or VM migration to achieve effective load balancing optimisation.

2.6 Deployment in the Fog 21

The underlying characteristic of these algorithms requires their customisation to be applicable
in fog computing settings.

The fog computing model extends the cloud load balancing problem from cloud resources
to include edge device resources. The cloud load balancing optimisation methods cannot
be applied in fog computing due to the fundamental difference between these computing
models. The existing cloud optimisation methods for load balancing have shortcomings in
terms of system hierarchy and load forecasting, which cannot be applied to the dynamic
and P2P architecture of fog computing (Ningning et al. 2016). The fog computing dynamic
load balancing optimisation mechanism provided in (ibid.), through graph partitioning and
clustering, assigns tasks to VMs according to the resource requirements of the tasks. The
proposed research, on the other hand, focuses on application migration.

In (Deng et al. 2016) a framework has been proposed to investigate the trade-off between
power consumption and delay in the cloud-fog environment. The research in (S. Verma
et al. 2016) proposed a load balancing optimisation algorithm, which uses a data replication
technique for maintaining data in fog networks with an attempt to reduce overall dependency
on big data centres. Application latency in fog computing has been addressed by VM
migration (L F Bittencourt et al. 2015). In (He et al. 2016) an architecture is proposed to
integrate fog computing and SDN (Software Defined Network) to IoV (Internet of Vehicle)
to improve the latency of sensitive services. This approach is highly domain dependent and

uses particle swarm optimisation to decrease service latency.

2.6.2 Global optimisation Techniques

Global optimisation can be defined as opposed to Load Balancing and similar solutions in the
context of Application and service deployment as an attempt to allocate all the components
as if they appeared at once. Load balancing techniques can handle similar situations but their
solution as well as their response style might be far for optimal.

Cloud computing approaches as in (Congjie Wang et al. 2017) can be described as
datacenter based with homogeneous resources and low latencies. The optimisation techniques
deployed on these systems reflect this. They employ methods to decrease costs or improve
SLA and QoS adherence. The paper in (Jim Zw Li et al. 2011) looks at multi parameter
optimisation based on SLA, Costs licensing, etc. to deploy a set of applications in a cloud
environment increasing a defined utility using a Greedy Algorithm.The approach in (J. Li et al.
2009) considers an Auxiliary Network Flow model based Incremental method to decrease
costs in a cloud deployment. The framework in (Beran, Vinek, and Schikuta 2011) looks

at optimising profits across a large set of workloads and parameters based on performance

22 Research Background

models. The deployment strategies used in (Congjie Wang et al. 2017) propose a QoS aware
content allocation based on a prediction model and a first fit method.

The Fog Computing approaches connect the Cloud with the Edge of the network which
means that the new environment will have an increased heterogeneity as well as varying
latencies. In this scenario the edge nodes are more resource constrained and different nodes
have different requirements. The solution in (Taneja and Davy 2017) looks at a custom
model based on use-case scenarios that maps application modules to network or fog and
cloud nodes. This method uses a first-fit method to place apps on the system. Deployment
in large scale heterogeneous smart environments can be considered fog deployments as in
(Cicirelli et al. 2017) where they look at developing a framework for deployment where they
combine container and VM based deployments. The authors of (Minh et al. 2017) propose a
Fog based Service placement method that differentiates between cloud and fog services and
attempts to maximise the number of services deployed on the fog.The research in (N. Wang
et al. 2017) looks at the geographical distribution of datacenters or cloud servers to manage
a set of edge nodes through their ENORM framework using a simple First-Fit method for
deployment.

The review paper in (Cruz et al. 2018) evaluates existing platforms and IoT Systems to
identify key characteristics, components and modules. These can be used to define and use
a fog model for deployment that can satisfy an increased number of use cases and define
optimisation methods that are tailored to these characteristics.

Container based optimisation has emerged since the rise of Docker (Merkel 2014) as
a lightweight alternative to VM’s. The authors of (Hoque et al. 2017) look at container
based deployments in [oT based Fog and Cloud environments. Cluster based Deployments
orchestrated by Kubernets (Brewer 2015) are proposed. The performance is subsequently
analysed. The PaaS based approach in (Aggarwal and Aron 2017) focuses on providing an
architecture to support container deployment in IoT environments to better utilise resources.
The research in (S. Kim, C. Kim, and Jongwon Kim 2017) proposes a high level [oT polyglot
framework that can encompass and orchestrate a varying number of cloud and edge clusters.

These methods usually employ greedy or first-fit methods to deploy application, which
due to the large scale of a typical deployment. While these provide an attractive time-
complexity their solutions are sub-optimal. More advanced methods need to be considered
to fully utilise the capabilities of the Fog. The methods proposed in (Zeng, Gu, and Yao
2018) are designed to solve the NP-hard problem of service composition in heterogeneous
environments through a Relaxation algorithm that attempts to reduce the complexity of the
problem. The research in (Duro, Purshouse, and Fleming 2018) looks at methods of using

partitioning or clustering to divide complex system into a set of smaller subsystems to reduce

2.7 Network Analysis and Clustering 23

the complexity and time required to find a minimum. The authors of (Intharawijitr, lida, and
Koga 2016) focus on evaluating fog computing as a paradigm to find size and scalability
issues as well as inflexion points where their use is warranted. This can be used as a starting
point as well as a justification for clustering.

2.7 Network Analysis and Clustering

optimisation in IoT systems is made difficult by two main factors. The first is with respect
to the complexity of these systems where migrating an application, service or resource
leads to the alteration of the connection topology as well as the locally available resources
the effect of which is difficult to model or estimate. The second hindrance in developing
optimisation solution for Fog computing is the lack of real-life information on data-sets,
use-cases, application sizes, processing requirements, message rates and their impact on the
deployed nodes. Most available use-cases such as in (Scheuermann, Verclas, and Bruegge
2015) show a high-level view of agile manufacturing systems which cannot be used for
optimisation purposes. The state of the art solutions for this as in (Oueis, Strinati, and
Barbarossa 2015; Deng et al. 2016; Zeng, Gu, Guo, et al. 2016; Vogler, J. Schleicher, et al.
2016) are the proposal of example applications and use cases on top of which they build their
optimisation methods. The drawback of these approaches is that there is no guarantee that
the proposed system parameters or use-cases resemble real-life solutions, reducing the utility
of the proposed models and algorithms.

The solutions look at different aspects of optimisation. The solution in (Oueis, Strinati,
and Barbarossa 2015) is a clustering and stage based method based on a simple delay model
between components, while in (Vogler, J. Schleicher, et al. 2016) a simple topology reduction
is attempted. The proposals in (Deng et al. 2016; Zeng, Gu, Guo, et al. 2016) show a more
elaborate application and delay model considering processing delay as changing through the
deployment locality as well as considering several different connection delay types. Although
these models are extensive, the constants, rates and values that change through migrating are
assumed instead of measured or deduced. This may cause certain optimisation approaches to
seem more advantageous than others as well as leading to inaccurate models.

When considering highly connected complex systems, the common approach is the use
of graphs to model the connections between entities. This has been done to model WWW
connection as in (Kleinberg et al. 1999) as well as to optimise Wireless Sensor Networks
(WSN) as in (Savazzi, Rampa, and Spagnolini 2014) for connection reliability, zero single
node failures and other parameters. Increasingly there are attempts at using these methods

on Fog Systems as in (Jingtao et al. 2015) where a tree based system is used or in (Ningning

24 Research Background

et al. 2016) where graph repartitioning methods are proposed. These proposals have the same
drawbacks of lacking real deployment data on which to test their algorithms on real-world
systems where the clustering factor, connectivity and distribution of nodes might vary greatly.
Finally, these solutions don’t consider the existence of a physical and virtual connection set
where the physical one looks at where application, devices and resources are deployed or
orchestrated, while the virtual one only looks at which components interact with each other.
This view would allow Node mapping between one graph to another which is the core of the
Fog Computing placement problem.

2.8 Summary

Advancements in Sensor and Actuator technologies and the standardisation of protocols
have led to the Emergence of the Internet of Things. This paradigm shift proposes the
interconnection of billions of devices through a varying set of methods. The resulting
environment is a highly interconnected heterogeneous system that promises to solve some of
the main issues of implementing Industry 4.0 requirements. The requirements of this proposal
envision factories with interconnected devices and systems that would results in increased
productivity, higher range of feasible products and increased safety and fault response. To
achieve these goals,the 10T systems need to have reliability and latency parameters at the
edge of the network that are usually reserved for the cloud.

The paradigm shifts that came with the introduction of Fog Computing by Cisco aims to
solve some of the latency and reliability issues that some of the core IoT frameworks and
approaches have by looking at the system not as separate Edge and Cloud components but as
one whole Fog. This approach envisions extending the virtualisation that can be found in
the cloud to the edge of the network utilising the resources available at the edge for lower
latencies and data locality. These concepts can be used in Industry by employing local or
on-the-fly processing of sensor data which can reduce latencies and decrease the reliability
and security issues that come with sending sensitive data up to the cloud.

Achieving the virtualisation level suggested by these new paradigms on the edge devices
deployed in the system a shift from traditional VM based deployments needs to take place.
This is required by the nature of the edge nodes that have fewer resources then traditional
cloud nodes, and due to their locality might be at higher demand. Container and Shared
environment based solution are proposed as a way of keeping some of the separation present
in VM based deployments while providing a more light-weight deployment. These gateways
also need to consider advanced Networking discovery and management solutions that can

adapt to a dynamically changing environment. Furthermore, these gateways need to support

2.8 Summary 25

multiple application types of varying languages as well as have connection capabilities to
several types peripheral devices.

Deploying Application on these gateways is as big a challenge as creating the gateways
themselves. These applications can be as heterogeneous as the gateways themselves with
varying requirements and characteristics. They may require large processing capabilities, or
have these vary over time or with the number of devices. These could require high reliability
or low latency. To accommodate these, the first things that needs to be done is to model
how the gateways and the applications behave so the problem domain is known and so is the
Hardness of the problem. The optimisation methods attempted in the reviewed papers as well
as the models vary in complexity and applicability where some only attempt to do a First-Fit
or Greedy deployment with emphasis on fast solutions other attempt global deployments
with GA, PSO and similar approaches.

If the requirements of Industry 4.0 are to be met through IoT and Fog Computing, a lot of
research still needs to be done so a standard framework or set of platforms can be used. The
require available and accurate models that can be used together with a varying number of
load balancers and global optimisation tools to provide the users and developers with ways
of measuring deployed systems and also deciding on what actions to take or how far they can

stretch these .

Chapter 3

Methodology

3.1 Introduction

When looking at the problem of answering the requirements of Industry 4.0 as described in
Section 2.3 through the paradigms of Fog and Cloud computing as presented in Section 2.2
there are a number of research direction and areas of interest that can be considered. Through
this section the methods and procedure through which a viable direction was identified
together with the iterative process that led to the final contribution and outcomes are shown.

The research objectives and questions were constantly refined throughout the thesis, as
new information was published, together with progress that was made in implementation
and the evaluation of related technologies. The three stages build on each other and follow
an iterative process where at each stage new directions and smaller and smaller niches are
identified. The same process and analysis methods were used in each iteration with the only

thing changing is the growth of the experience, testing and existing data or platforms.

3.2 Research Methodology

The research methodologies used when conducting this research changed based on the
alteration or iteration of the research questions as components were implemented and new
information was found. In overview, a collection of mixed methods was used in such a case
as suggested in (Borrego, Douglas, and Amelink 2009). Quantitative methods were used
to evaluate the benefits or drawbacks of certain approaches while qualitative methods and
data gathering was used to determine why certain methods might perform better than others.
Qualitative methods were used in the evaluation of the platform where its adherence to the
fog and IoT requirements was examined.

28 Methodology

Capabilities

Literature System and Use-Case
Analysis

Review Protocol Review | Analysis
. I i H

Vv .
— Fog of Things
Design Platform

Analysis and
Validation

Model
Formulation

Application and
Gateway Model

Method Analysis and Testing
Proposal Validation Parameters
|
Y
Clustering Based Analysis and
Optimization Method Validation

Fig. 3.1 Overview of Research Methodology

The overview of the research methods can be seen in 3.1 where the three stages can be
seen and the components of these are are described on how they contributed to the final result.
The three stages of the research can be broken down the to the three main outcomes that are
the Platform, the Model and then the optimisation Methods proven on these.

3.3 Fog of Things Platform

The first component was designed to answer the requirements of industry 4.0 and also to
explore some of the novel concepts of IoT and Fog Computing. To decide which components
the platform a similar methodology was used as in (Cruz et al. 2018) where a detailed

literature review was done to identify direction and requirements while a Systems, platform

3.4 Application and Gateway Model 29

ans protocol review was done to see which is mature enough and has the right functionality to
answer the requirements. Furthermore a set of use-cases were considered with requirements
that the platform needs to answer. A final component that was considered when formulating
the concept of the platform was the capabilities of the physical devices and team members.

Based on these stages the Platform design or frameworking stage was undertaken that
had three distinct components. Requirements were formulated for the platform as well
as a set of expected improvements to the current state or to a reference state. Based on
these requirements, components and technologies were chosen from the tested set and the
Platform was implemented. After the implementation the components were validated to show
they correspond to the requirements and a run time analysis was done to show how certain

parameters change on the system and how these are in-line with the expected improvements.

3.4 Application and Gateway Model

The application and gateway model was formulated after the analysis and validation of the
platform. In the first instance a niche literature review was done where future directions were
analyses and the state of the art regarding application models for deployments, drawbacks
and shortcomings were identified as well as opportunities for improvement. With identifying
the parameters, that looked at which components of a deployment can be measure using the
platform and how these can be related to the ones that cannot, but are crucial in such systems.

The method of identifying and using the models found is similar to the one used in
(Sargent 2007) where the formal model was designed, and then it went through a number of
iterative stages of altering and modifying it until it could estimate changes and deployments
to match the requirements.

To validate the model there were three sets of tests that were performed. Initially a set of
tests was run to identify the parameters of a system while afterwards the model was validated
using these parameters in two sets of tests. The first test looked at individual being deployed
in controlled environments and how their behaviour changed, while the second one looked at

more bundled and complex deployments where the overall estimation capacity was analysed.

3.5 Clustering based optimisation method

The optimisation methods that can be applied to a system are largely reliant on the model
that is being used as shown in (Aibinu et al. 2016). To determine what types of method
can employed another niche literature review was performed looking at what methods were

proposed to allocate applications to gateways. Based on this review, and analysis of the

30 Methodology

characteristics of the model and a Hardness test to analyse how difficult the problem is, the
optimisation method and its components were formulated. A number of possible directions
and solutions were found and analysed and as in the previous section in an iterative fashion

they were improved or replaced.

3.6 Validation and Analysis

When considering the validation of the optimisation method the guidelines of (Brownlee
et al. 2007) were followed where the methods were restricted to a certain set of use-cases
and testing data variation, limiting their generality but which also allowed the components
to be thoroughly tests and a qualitative view of the results to be available rather than just a
quantitative one. The scaling model and generated test cases were based on the industrial
use-cases and their graph-based analysis to verify how components interact and what type of
scalability model they follow.

The optimisation methods were analysed in three distinct ways. The first one looked at
evaluating the effect of each component on the results of the system, attempting to reduce
the impact of variability so the singular effects can be seen. The second component looks
at comparing the proposed methods to some existing ones, or slight variations of these to
see how they perform and what is the trade-off between these as the no free lunch theorem
(Wolpert and Macready 1997) suggest. The third set of evaluation tests look at determining
how the proposed methods work in scalability scenarios. This section looks at complexity
analysis as well as the increasing difficulty of finding valid solutions as large sizes are
reached.

Chapter 4

Fog of Things Platform

4.1 General View and Platform Requirements

The proposed Platform as a Service generic gateway architecture attempts to answer the
requirements of an ever evolving loT environment while improving on existing proposals
especially on the topic of migration, clustering, abstraction and routing of device messages to
the appropriate regions. The use of the resources available on the Gateway has been expanded
from those suggested in (Aazam and Huh 2014) with the introduction of context information
such as region, network information and location information. The review showed a need
for a generic architecture that can encapsulate a wide variety of containers and drivers from
different providers and languages.
This architecture is designed to fulfil the following requirements:

4.1.1 Protocol Agnostic Device Messaging

The messaging between devices and the application environment through the drivers is
designed to allow for messages to be transmitted regardless of the devices’ protocols or
technologies. This allows applications to be oblivious to the underlying protocols or tech-
nologies with which they want to communicate. Furthermore, due to the routing of messages,
applications can communicate with the devices from the cloud, or with the ones that are

registered to other gateways on the local cluster.

4.1.2 Regional Connections and Messaging

When gateways are deployed onto a WAN network they can form a local region which should

allow information and messages to be shared between peers. This allows for faster message

32 Fog of Things Platform

passing among local devices and with this connection clustering and high availability are

also possible.

4.1.3 Multi-Cloud Tenancy

The gateway should enable multiple cloud connections to be established in order for applica-

tion and management information to be sent and received from these tenants.

4.1.4 Modular Application Deployment

The application container should allow multiple applications to be deployed on the same
gateway and communicate with each other so that complex applications can be deployed
across simple components.

4.1.5 Application Migration, Clustering and Testing functionalities

Due to the nature of the gateway it needs to meet QoS requirements associated with the
applications or cloud that it interacts with. These applications need to be tested and mi-
grated seamlessly while maintaining inter-application and device communication in a secure

environment.

4.2 Generic Gateway Architecture

This research defines the Fog of Things as a Fog Computing platform that treats things as
resources of the edge device and allows for a unified view and messaging with these devices.
Fig. 1 shows the overview of the platform and the connections between components. The
proposed gateway architecture is built around a new asynchronous messaging based model
that allows the abstraction of different drivers and components by allowing messages to be
routed to their destinations dynamically, based on a new header oriented routing model.
The proposed architecture offers a novel gateway design by increasing the horizontal
integration of the gateways by allowing applications to send and receive information to and
from a number of cloud providers using the configurable brokers. It also offers a wider
range of client connection possibilities by providing WAN client connectivity through the
configured regional connections. Another novelty presented by the gateway is the protocol
agnostic container environment that allows applications to communicate with cloud providers,
regional clients, peer applications, devices and requests resources through a unified medium

without considering the underlying protocol for device, region or cloud communication.

4.2 Generic Gateway Architecture 33

This is achieved through a set of brokers and drivers that translate and route these requests
into messages understood by the respective sinks. The final novelty of the gateway is the
possibility to configure WAN clusters of peer devices and migrate applications without the
need of reprogramming them between the peers and available cloud containers.

This architecture in Fig. 4.1 and the associated components described in the following

paragraphs can satisfy the requirements presented in the section above.

; 4 : . A ;
Admin Cloud Messaging |—{ Tenant Cloud Messaging
. = | | % .
¥ v
=

Access

MQTT/Local MQTT/Local :
Messaging Forwarder Messaging Forwarder -
L 4 2
N \ %
v v H)
Gateway Local Regional _)
Controller Messaging Communication |~ | 3
: o
[Service p— -]
| “ - ..
=
N 2
(=3
=)
= |
Messaging to Event Admin‘ = E
Local Resource | > T_* s |5
=
E
&

Application

Q Event Admin |
- Other Local l
Local
Resources
T T N

[Dongle Communication Drivert] [Dongle Communication Driver2]

¥ _ .
Device Comm 1 | Device Comm 2
A\ ' ' v

Fig. 4.1 Architecture of the Gateway

The gateway controller analyses and deploys applications, as well as sending usage,
load, capacity, connected device and region information to cloud and region clients. The
gateway manages the non-admin tenant connections and the device drivers, and controls the
regional authentication and registry. Finally, the gateway is capable of searching for available
gateways in its WAN network. It can either enrol them to a region or create one and become

34 Fog of Things Platform

its coordinator, if no peers are found. The controller manages the information about the
capabilities of the gateway, its resources, the connected drivers and the available regional
devices.

The Application Container is controlled and monitored by the Gateway Controller. Rather
than having applications connecting to the Messaging Service directly, the Application
container translates messages and events into its internal equivalents that can be understood
by the deployed applications. This allows more applications to listen to the same broadcasted
message, communicate between each other, and send information to the outside components
asynchronously. Furthermore, this allows policies to be put on the devices like an internal
firewall that would allow apps to send and receive messages only from authorised or authentic
sources.

M2M communication is fulfilled by the device communication components that are
directly linked to the transceiver hardware and are also tasked with registering, authenticating
and monitoring the devices. The received device messages are interpreted and sent to the
corresponding sink through the messaging service, while messages sent from applications
are encoded into the desired format and sent to the devices.

Cloud communication takes place through dedicated brokers that take messages directed
at them, parse the headers and payload to the desired format and send them through the
broker’s medium, doing the reverse for received messages. This allows for different protocols
to be used by tenant clouds to access applications and the gateway controller. Storage and
metadata information like location, regional clients, network information and other gateway
details are considered local resources to the applications. Applications and devices are
allowed to save data into databases, request location data and send the data to the application
layer or the cloud.

The regional communication refers to two distinct communication methods. The first
looks at gateways that can be discovered through a local network and that can be linked
through the federation of the messaging service. The second method proposes the creation
of regional access points to applications which can receive messages from a more varying
range of local clients.

The details of the proposed components are described in the following subsection. Each
section looks at a major component of the framework and describes its functionality and

proposed mechanism.

4.2.1 Local Messaging Service

The local messaging service is responsible for routing messages to the appropriate queue
based on their headers and routing information. It is designed to support asynchronous

4.2 Generic Gateway Architecture 35

messaging between components. Furthermore, new drivers and different configurations can
be added to the gateway without modifying any applications or other components. In order
to accomplish this, the messaging service is designed with a complex array of exchanges,
which can be seen in Fig. 4.2.

Conn1 Conn2 &i
=
1 i 5
Q
E x
=
I
o
O € -
Cloud™ A A g
Cloud o
14
'] R T T
8] :
~l ' R — &
[" =%
: > <
: » .
tPp{ X fpoeemccn= PeeAssssnasponrmsensnsanaapnrues)n

. Device
‘Resolve

Database

Device

Resource
Resolve

T I

RF24 434Mhz

Fig. 4.2 Messaging Exchanges and routing

The routing is designed in such a way that components can send messages in a generic
format and the exchanges can route these messages based on the routing table on the gateway.
The exchanges that routes messages to other components hold the group name of components
(resources, devices, region, cloud, apps) and are designed to route the collected messages to
the corresponding resolver components.

The message passing is designed for scaling, in order to support the addition of new
components seamlessly and removal of old ones. Resolver exchanges allow messages to be
routed to their specific queues based on header information and are the main configurable

components to support the routing table in the messaging service.

36 Fog of Things Platform

Components are designed to communicate with other components by publishing messages
to their specific exchange and retrieving messages from the queue in a unified way, without
knowledge of the number or type of destinations of the message. This takes away the burden
of re-configuring the components when modifications on sources or destinations take place.

The control component is a special one, as it does not communicate with any other
components through the messaging system but configures them on deployment, with the
exception of the cloud connections which it uses to send and receive information and control
parameters. The region component is connected to the container and cloud component, which
is done in order to be able to route messages to applications which are deployed locally and
to those which are deployed to the cloud.

4.2.2 Cloud Controller and Local Resources

The cloud controller is responsible for configuring and deploying all the communication
drivers with the cloud or the devices as well as managing the regional connections and
authentication while relaying status information to the cloud.

The gateway sends status information to the specific cloud component by responding to
requests that were made through the cloud connections. The first and main cloud connection
has the most control over the system, as it is able to add and delete other connections, remove
and modify apps deployed by other tenants as well as to set up the region communication
and the device drivers. The other tenants are limited to offering and requesting authentication
information for devices or regional agents as well as deploying and configuring their own
applications and devices.

Local resources are controlled by the gateway controller and receive requests, data and
commands through their respective drivers connecting them to the local messaging service
and through this the applications. These local resources may include context information
such as region parameters, location information, and storage. The storage component is a
special one, because in contrast with other resources, it can contain meta-data to support data
requests. The resource can be configured for high-availability throughout the gateways as
well as through cloud backups by replicating its functionalities which are abstracted away
from the applications. A distributed database is proposed for the use of cloud storage and
redundancy is proposed for highly distributed unreliable systems. Local versions will run on

the gateways providing local instances of data, smart migration and backup.

4.2 Generic Gateway Architecture 37

4.2.3 M2M Communication and Registration

Each gateway is equipped with its own set of communication mediums to transmit and
receive messages from sensors and actuators. To account for differences in communication
protocols and communication mediums the gateways have a driver for each medium that
acts like a broker between the devices and the messaging system. These brokers are used to
authenticate devices and add them to the locally available list for security and encryption.
Furthermore, they interpret the received messages and assign the proper routing and header
details to assure that they reach the required destinations. These drivers can have a more
diverse range of tasks based on the requirements of the protocols and mediums such as packet
forwarding, routing table creation and other WSN gateway tasks.

The registered device information is stored in the driver specific database and is used by
the gateway controller to determine which application to deploy and for routing purposes.
Furthermore, the device information saved in the database, that uniquely identifies the
connected physical devices and their states, is used by the driver to monitor, authenticate and
correctly route messages to their destinations.

Due to the wide range of protocols and transmission mediums, the messaging and routing
system needs to be configured in such a way to allow different drivers to send and receive
messages in a unified way. A slightly altered version of a JSON based markup language
presented in (Jennings, Arkko, and Shelby 2012) that has been used to link advanced IoT
structures in (Lampesberger 2016), called Sensor Markup Language or SenML is proposed.
This would require all connected devices to register, send and receive information based on
this language. The device registration information needs to contain information about the
device’s type, its version, and the sensors that it is equipped with. Any other communication
specifics that are not relevant to applications or monitoring of devices are abstracted. The
SenML based device message transmission is used for driver to driver, driver to app and
app to driver communication only and is used as a common medium between protocols that
can describe messages that need to be sent. The actual messages sent to the devices may
vary depending on the control protocol. This would allow older devices to use their existing

handshakes and means of message transmission to be connected to the system.

4.2.4 Application Container

The client bundle in the container can be configured to read messages from a messaging
service queue and to create events based on these messages. The applications create events,
the broker reads the messages generated from these events and sends them on to the local

messaging service as shown in Fig. 2. The headers of the messages are designed to allow

38 Fog of Things Platform

applications to send messages to different locations, but also to act as a filter between the
application container and the gateway resources only allowing applications to send messages
to their pre-configured resources.

Communication between applications can be carried out in two distinct ways. The
messaging system is more suited for communication between applications that are not
closely linked to each other and can be interchanged. Communication through the internal
services or other structures provided by the container is more suited for use within the
same application set to create larger application from individual bundles following the
Microservices architecture. The only constraint is that applications that communicate with
each other through container specific structures need to be migrated together. Those which
communicate through the messaging service can be kept in different locations and migrated
separately.

In order to enable applications to respond to new devices being added to the system as
well as to be able to listen to individual devices and have messages transmitted to these
applications from the cloud, applications need to be able to reconfigure their application
name and the name of the devices they are listening to. This is achieved through assigning
a configuration file to each application that contains all the relevant information. The
gateway controller adds information regarding the devices the application is configured to
communicate with as well as the applications name, the regional communication channel, the
cloud connections and other configuration parameters. When the configuration is updated, all
applications are refreshed to start with the new set of data. Applications can then be deployed
into multiple environments with multiple use cases as well as facilitating their testing and
migration.

The construction of the application container allows for application migration within the
local cluster and to the cloud. One of the main differences between the application container
on the host or other local gateways and the cloud based/virtual gateways is the complexity of
the messaging service. The gateways residing on the cloud only receive and send information
from one source, having the modified brokers in the application container mimic the gateway
sources of the messages based on the message headers. This difference allows the deployed
applications to be location agnostic, receiving messages in the same format. Finally, using
this method, the creation of virtual gateways is possible as well. These virtual containers
have dummy applications that mimic the behaviour of real devices by posting and consuming
events on their behalf to allow for a more realistic testing environment as well as for scaling

experiments.

4.2 Generic Gateway Architecture 39

4.2.5 Regional Communications and Clustering

Regional communication refers to gateways that are on the same network or can reach each
other through local network scans or any other methods that send and receive application
messages for clustering, high-availability or other inter-application communications. There
are two ways to connect and access applications from the local network. The first one, with
more constrained connection is realised through the federation of the messaging service, so
gateways can connect to each other seamlessly. The second one is a more loosely coupled
connection that would allow messages to be sent from different clients through the regional
drivers that convert the messages to application messages inside the messaging service. The
federation configuration of the messaging service offers better security, message latency and
ease of use due to the fact that it extends the messaging service from one device to another
by having the exchanges mirror on all nodes and having some of the queues unique to their
specific gateways. Applications can be deployed on a single node and communicate with
other devices and cloud tenants. The federation messaging approach also enables devices
to configure clustering and high-availability as resources which may lead to better QoS
parameters.

The more loosely coupled connection through the regional drivers would permit gateways
to be of different types and configurations with even outside applications connecting to these
endpoints. The configuration of these endpoints would be fulfilled by the cloud controller
that creates a queue for each application that has regional communication set up in the
configuration files and modifies the driver to make these available through external requests.
These requests are treated as RPC calls and each request has a unique transaction id. This
solution offers extra functionality and reduces costs by adding an alternative of accessing

applications through the local network rather than through the cloud connections.

4.2.6 Cloud Connection and Management

Cloud connections enable the gateway to send and receive application data, sensor and
actuator data, as well as to migrate applications through message passing and the deployment
of applications. Each connection to the administration or tenant clouds is managed by a
designated broker through the protocol preferred by the cloud. The first connection is to the
main cloud, which is pre-configured in the gateway. The other connections can be started
through commands received on the first one using the gateway controller.

When applications are migrated to the cloud, the respective connection is used to allow
messages that would normally be transmitted to the local container to be transmitted to the

cloud where they are routed to the cloud container. The brokers in the container transform

40 Fog of Things Platform

them into messages with the headers and payload corresponding to those received on the
physical gateways container. Applications can be migrated from the physical gateway to a
virtual gateway in the cloud while retaining all inter-application communication and local
messaging without reconfiguring or redeploying the applications.

In order to allow inter-application communication to occur a forwarder is required in
the container that receives messages designated to the application and sends them to the
cloud communication component as well as accepting responses and creating events as if the
application was never migrated. This functionality can be extended to replicate local services

on the container.

4.2.7 Migration and Message Routing on the Platform

The message routing on the gateway is the backbone of the protocol agnostic messaging for
drivers as well as the mechanism used for the migration of applications between gateways.
Migrated applications need to maintain their full functionality, being able to access data in
storage and all connected devices while being able to communicate with peers in the region,
cloud and other services on the gateway.

The migration process requires all messages going from and to the application to be
routed to the new host gateway. This gives the app the illusion of still being on the same
gateway, without needing to reconfigure or rewrite its code.

The messaging service uses federated connections to forward messages between peers.
The connections between gateways by default are in a star topology that allows each gateway
to access each other directly, reducing latencies and hops but increasing overhead on larger
systems. Other topologies can be designed per application environments.

An example of how this routing is done can be seen in Fig. 4.3 where Application 2 is
moved from the cloud VM to the gateway, this changes the run-time characteristics of the
Application, the new environment having different latencies, different load and processing
capabilities.

An application is migrated by deleting it or stopping it on the host gateway, re-configuring
the existing routes of the application to be sent to the new host, adding the routes on the new
host to the application container and then finally deploying and starting the application in the
new host’s container. This is done through the configuration file of the application.

4.2.8 Application and Gateway Monitoring

The monitoring on the gateway is done by two components. The first is inside the application

container and monitors all application messages, even inter-app messages as well as the total

4.3 Architecture Implementation 41

— 0. I Cloud
Platform

M1/\ e = = =

=

Gateway 1

Fig. 4.3 Migration

CPU usage of the applications threads. This component sends a message to the gateway
monitor which looks at a wider range of parameters but takes a more general look at messages.
The second component creates a summary file which is saved to the database periodically.
The monitor in the application container is able to retrieve information on messages
sent to and from each application to any drivers, cloud connections, regions and resources.
Furthermore, it reads information on the CPU usage of every application. The gateway
monitor has a more general view of the messaging as it shows all messages routed from all
components without information on individual users/applications. This monitor can also give
information on individual application storage use, gateway load, RAM use and CPU usage

on the system. The load is adjusted to the processor count of the platform.

4.3 Architecture Implementation

The existing architecture is implemented based on the general descriptions and technical
requirements presented in Section 3. The implementation demonstrates the feasibility of
the proposed generic gateway architecture as well as the use of the OSGI container as a
gateway application container. The underlying messaging architecture is AMQP within
the RabbitMQ server. The proposed communication mechanism with the cloud is MQTT
which has received support from an increasing number of cloud providers. For the regional
communication, either REST or STOMP based drivers are proposed while the clustering of

42 Fog of Things Platform

gateways is supported through the federation functionality of the RabbitMQ messaging server.
Each M2M communication protocol and device has its own functionalities, advantages and
drawbacks. The device drivers’ subsection shows the basic backbone to the drivers that were
used. For the application container, the OSGI based Karaf is the most compliant with the

proposed generic architecture.

4.3.1 Device Drivers

The approach to creating the drivers has been tested for 4 different communication mediums,
434Mhz, rf24, Bluetooth and Xbee. These four mediums differ in their level of abstraction of
the OSI layers as well as in their added functionalities. The first protocol only implements
the physical level requiring the driver to configure the rest. The rf24 based protocol has the
added functionality of discovery and being able to listen to specific channels, but what this
lacks is the ability to listen and communicate on multiple channels effectively. The Bluetooth
based RFCOM communication protocol allows for a wider range of features and sending
messages through sockets to certain devices. Xbee is a similar protocol having multi-hopping
and networking functionalities as well. The drivers for these protocols work in the same way
for applications, with none of the differences being visible at the application level.

All applications to be deployed in the proposed architecture at least include a few common
functionalities and these are: the registration of devices; the monitoring of devices; and the
sending and receiving messages from devices based on their ids. The whole registration
procedure is shown in Fig.4.4 for the case where the device has been previously registered or
when it is a newly registering device.

After the registration, devices only send a shortened version of the sensor data, only
containing the sensor name, the value and the device id. The received message is parsed to
make sure that it is consistent to the JSON format and key information like the device id is
extracted and then the appropriate header information is created and the payload is sent to
the messaging service. The structure of this message can be seen in the example shown in
Table 4.1.

Information regarding the time when the message was received and the driver id is added.
Furthermore, the device id is used to retrieve the device type and order from the registered
device database and added to the headers to simplify routing and application development.

4.3.2 Application Container

There are a number of candidates for the application container like Docker, that would allow

applications of any type to be deployed and some for language specific application like

4.3 Architecture Implementation 43

Device ICiriver Database

send Registration Info

Check for Device Existance

Return LD Qr Ermphy

Fegister or Update Device |

Zanfirm

Send Mew LILID

Fig. 4.4 Registration sequence diagram

Python and NodelJs, usually web-application deployment based on the Web Service Gateway
Interface (WSGI). The container, which best fits the requirements as well as possesses
extensive control of deployment and life-cycle management, was based on the Open Service
Gateway Interface (OSGI) framework (Alliance 2003), which is designed for deploying
modular java applications, dynamically on top of the Java VM. The Apache Karaf (Nierbeck
et al. 2014) implementation of the framework has a number of add-on libraries that are key
components in the development of applications using the Microservice architecture and in
enabling a wide range of applications to be deployed side by side.

To allow applications to listen to specific events, the received messages are routed to the
EventAdmin based on their headers and contained data. These routing rules can be seen in
Table 4.2.

In order to allow for applications to respond to new devices being added to the system
as well as to be able to listen to individual devices and have messages transmitted to these
applications from the cloud, they need to be able to reconfigure their application name and
the name of the devices they are listening to. This is achieved through the ManagedService
class’s update() function that allows applications to read the configuration file. In this case,
each device will have its own file where the gateway controller adds information regarding
the devices the application is configured to communicate with as well as the application’s
name, the regional communication channel and other configuration parameters. When the

configuration is updated, all applications are refreshed to start with the new set of data.

44 Fog of Things Platform

Table 4.1 Message from Driver

Data/Property
Content Name Property Name \ Property Value
device OWaDMY9V
dev_type ardUnoTemp
dev_count 0
Header comm Gateway-RF24
datetime 2017-05-09 12:02:36
[{”V": H26-OOII’ Han: "temp"}’ {"VH: |l34.00l”
Payload ”n": "hum"},{"v": H8.95V|’ Hnll: "deW"}]

Table 4.2 OSGI Message Translation

Sender Key Property Receiver Resulting Topic

device dev_type app /device/receive/[dev_type]
app * device /device/send/
cloud app_name app /cloud/receive/[app_name]
app * cloud /cloud/send/[app_name]
resource resource_type app /resource/[res_typel/receive
app resource_type resource /resource/res_typel/send
region app app /region/receive/[app_name]
app * region /region/send
app app_name * /apps/[app_name]/send
* app_name app /apps/[app_name]/receive

Applications can be deployed into multiple environments with multiple use cases to facilitate
their testing and migration.

The applications can be managed through the gateway controller, while their status and
performance are monitored through the bundles deployed on the container according to JSON
based deployment files. For the migration of applications, the internal structures used for
communication-like services allow for containers to migrate this service on the local region
if configured properly. For the implementation, they are considered to be available only on
the local deployment and applications linked through these services are required to be on the

same gateway.

4.4 Summary 45

4.3.3 Regional and Cloud Drivers

The drivers used to connect to the cloud providers are designed to broker messages from the
local AMQP messaging service to a Message Queue Telemetry Transport (MQTT) server
hosted on the cloud. MQTT was chosen as the connection protocol to the cloud due to the
wide range support from major cloud providers like AWS and the added functionalities these
propose. This light-weight messaging format was designed for high-latency or unreliable
networks so it offers the best solution for asynchronous messaging between cloud and gateway.
The cloud communication drivers are designed to allow for single direction connections and
can have multiple providers connected and routed through their instances.

Connecting to the cloud can be done through the Secure Socket Layer (SSL) or through
simple username and password authentication, depending on the security requirements and
the provider’s options. In order to send and receive information from the cloud messaging
service, the proposed broker translates the byte-array messages into headers and payloads
as well as sending them to the required exchange. The first connection is to the main cloud,
which is done before the gateway starts. The other connections can be started through
commands received on the first one using the gateway controller.

Messages on the local cloud queue need to be parsed into a byte array and sent to the
cloud. The solution for this parsing problem is creating JSON strings from the received
AMQP messages where each header and the payload are made into a JSON object. The
payload is either parsed as one object, or as sub-components formatted in JSON as seen in
Table 4.1. Drivers used for regional communication use REST APIs to receive and send
messages from applications. Each application has the option of configuring one or more
regional connections that can be used by outside applications. These are configured by
creating a queue for each and routing the queues based on URL location on the REST APIs
which get configured by the gateway controller. This configuration would allow applications
to have their own access keys and authentication option on the region. The other proposed
drivers would rely on STOMP messages being routed to the messaging service based on
correctly formatted headers. Messages with the appropriate configuration would be routed

and those without the right data would be lost.

4.4 Summary

The middleware platform and its components described in the previous sections are designed
to satisfy the connectivity and resource management requirements of Industry 4.0 through

message translation and routing. This research proposes extending these requirements with

46 Fog of Things Platform

the concepts of Fog Computing where the system resources are virtualised and the users view
the system as one homogeneous entity.

The messaging service and the translation of messages through the SenML and AMQP
format are designed to produce a homogeneous view of a system that is comprised of
heterogeneous sensors and devices that have varying methods of communication, reliability
and latencies. This translation is also used to allow message transmission from a source
gateway to a destination one. The same method is used to translate inter-app or service
messages to be transferred between application containers. This support application migration
and also allows the system to support a single system view.

This view and the translation methods add extra overhead to every message but is crucial
if migration and message routing is to be considered. This in hand also shortens development
times by allowing developers to focus on functionality rather than lower level connection
programming and message sending. This system also allows for drivers to be developed and
deployed once which increases horizontal integration of these services and since the used
format is an industry standard it can be easily applied to allow multiple platform, cloud and
device collaboration.

This system, while having numerous benefits also results in a number of challenges
as deploying application on the system in such a way that latency, reliability and other
characteristics are maintained to assure QoS constraints and to satisfy SLA agreements. Due
to the highly shared environment in which applications are deployed, traditional VM based
models are not suitable to model these platforms. The upcoming sections looks at modeling
these parameters for individual applications, gateways and devices. Multiple parameters are

taken into account and varying utilities are proposed.

Chapter 5

Application and Gateway Model

5.1 Overview of Model

The application model attempts to estimate the functioning parameters of an application
based on the limited information available making estimation and optimisation possible.
The model attempts to calculate the load of the application and its connected devices on
the gateway which is used to estimate the effects of migration. To be able to measure the
total delay of the device messages test drivers are used, that allow messages to be sent to the
application container at a constant rate and allows the measurement of the actual return times
of the messages. The processing delay is measured by the application itself. The delays
between drivers and physical devices are not considered, because these delays cannot be
improved by the system and are subject to the adopted protocols and underlying connections.

TP = IP1pSO" (5.1)

The equations are based on (5.1) which is the standard formula for processing time
calculation, where T is the execution time, I” is the Instruction Count while the I/PSC" is
the gateway specific Instructions Per Second capability. The equations which are defined
in the next subsections aim to adjust this formula to account for multiple processes running
and the load of the gateway. The Instructions count I* is analogous to the Unit Load Lf-‘j
presented in (5.7) while the IPS®"component is analogous to the k1 and k2 constants from
(5.9). The differences in Instruction per second capability of the systems are adjusted using
the processing capacity chap and processing speedup PJ.SP “d which is based on Amdahl’s law
(Hill and Marty 2008) where it is considered that most of the code designed for IoT systems
is sequential so a multi-core system will increase the processing capacity of the system but

only a more performant processor will speed it up.

48 Application and Gateway Model

5.2 Gateway Load

The gateway load is measured by the monitoring component on the gateway and is measured
as the total CPU usage in the system in (%). The gateway has two types of overhead, the
first type is generated by maintaining the cluster connections and background applications.
The second is generated by device message processing by their respective drivers. Both are
constant to a gateway and are not improved by migration.

The Gateway Cluster consists of the Gateways G; having j denoting the gateway number
containing Applications A;; defined as application number i owned by gateway ;.

The Gateway processing speedup PJ-SP eed i calculated in (5.2) by comparing the execution
time TJ.GW of a bit of code on the gateway to the reference value TR(:ZVJK which was run on the

node with a P,‘gf ;ed of 1.

Speed T
pret = J (5.2)
J G Speed

TRe}t{jPRé);e

The Gateway processing capacity P]-Cap is calculated in (5.3) by comparing the measured
application load of a known reference application and comparing it to the value measured on
the reference gateway that has a processing capacity Plg :]f’ of 1.

a

14
PJ.C”I’ =— (5.3)
LiRef PRef

The Gateway Load L]GW the sum of Measured Application Loads L?j and the Base Load
Lf the gateway in (5.4) and is measured in % of the CPU usage. This variable is directly

measured through the monitoring component.

Gw __ 1B A
LY" =L} + Y Lj (5.4)

As defined in (5.5), the Base Load Lf is the processing power used by system/background

processes and drivers which are considered constant throughout migration process.

LB = plde 1 Y 1P AGY < P77 (5.5)

The Idle Load Lﬁ-dle in (5.5) is the % CPU of the gateway j at rest without any message
passing or an application related activities. It is considered that this to be constant on every
gateway, regardless of applications or connected devices or peers.

The Gateways Driver Message Rate).ijW used in (5.5) is defined as the total number of

messages nj; sent and received by driver k on gateway j in a certain time interval As and is

5.3 Application Load 49

measured in messages per second (msg/sec). The Driver Load LE in (5.5) is described as the
%CPU used by driver k to communicate with the devices connected to the gateway through
the driver for a certain message rate and is specific to each device driver.

The power consumption of a server or gateway can be a factor CPU Load, 10 Rates,
Storage, Memory Accesses and other peripherals. Considering a case where through migra-
tion the resources and drivers are accessed from the same location, the main components
that are of interest would be the CPU Load and added communication between gateways.
If considering as this work does, that Reliability of the communication can be partially
accounted for by its effect on the CPU the work in (Blackburn and Grid 2008) is used, where

the Power Consumption can be defined as a factor of the Gateway CPU.

5.3 Application Load

The total load of an application can be modelled based on the test data from the total CPU
usage of the application threads and the known messaging overhead added by the driver and
the container broker. These units are defined based on the test application set but would
describe any measurable application deployed on the gateway that functions in a similar
manner. Y
L?j _ (ij +Ca1:1) ij (5.6)
Pj

The Total Application Load Lf‘j in (5.6) defines the weight of the application on the Gate-
way j which is defined as the product of the application unit load L?j and the Message Load
Ly adjusted to the processing capacity coefficient P].Cap and multiplied with the application
message rate /llf?.

The Message Load Ly, in (5.7) is a constant that denotes the processing impact of the
received messages of an application and is the load created by the broker driver between the
messaging service and the containers event service. L?j and /'Ll-/;‘. in (5.7) are measured by the
monitoring application while Ll?‘j and L‘i“j are calculated.

The Application Message rate or klf]‘. used in (5.6) is defined as the total number of

messages n;; sent and received and application i on gateway j in a certain time interval.
L4
u _ ij pCap
L= o P; (5.7)
ij
The Application Unit Load Lj; is defined as the reference processing power used to

process one message of the application regardless of the current Message Rate. The Unit

Load in (5.7) is used to compare the behaviour of different types of applications based

50 Application and Gateway Model

on their processor use and message rate, without knowing anything about how they work.
Considering that the processing power of the host remains the same, the L}’ of the application
is constant indifferent of deployment location. The unit load is measured in % of the CPU
usage for the specified message rate or (%cpu/msg/sec)

The Measured Application Load ij in (5.7) is defined by the amount of CPU the
application threads are using on average when running and is denoted by % of the total CPU,

as measured by the container monitor.

5.4 Delay Model

The delay of the application can be modelled based on the load of the gateway they are on,
the number of messages they receive and the amount of load they generate on the gateway.
The model limits its predictability to applications that only perform major processing tasks
based on device messages and do not perform background operations. This method can be
used for a general application set but its predictability decreases by the amount that the test
application differing from the test model.

The Application Delay D‘l“J can be formulated in (5.8) as the sum of all application related
delays, and is the sum of the processing delay Df.} and the networking delay Dﬁ\jf

D}; =D, +D}} (5.8)

The Processing Delay DZI.} in (5.9) deducted from out experimental data in the next section,
where it is a function of the Gateway Load LJGW in (5.4), the Unit Load L{ defined in (5.7), the
Gateway processing speedup coefficient pr ¢ed and the two constants k1 and k2. The values
of k1 and k2 are analogous to a reference IPS®" value and how it changes with load. The
value of k1 defines the reference /PS rate of the gateway with no load while k2 defines how
the k1 value is reduced with added load. These reference values are adjusted to differentiate

between gateway processing capabilities using pr ced

Df =Ly P! (k1 + k2 L") (5.9)

The Networking Delay ij can be described by the sum of delays generated by routing
messages from one gateway to another through the messaging system and is described in
(5.10).

j:GHost
D% = D§ase+ Z DGj,Gk +D§x; (510)

k:GMigrated

5.5 Reliability Model 51

D¢ Gk represents the network latency between j and k while the sum is the set of delays
that are required to link two gateways. If the application is deployed on the same gateway as
the devices, then D} = Dfj .

The External Routing Delay Dg .+ 1n (5.10) is a component of the Networking Delay and
is an experimentally derived platform specific constant that denotes the average time it takes
for a message to be routed from one gateway to another, not taking the latency inside the

network into account. The Base Routing Delay DX is the delay added to any message

ase
going from the driver to either local or external application, and is a fixed experimental and
platform specific value.

The Ping Delay Df’,?g in (5.10) represents the latency between two directly connected

gateways and is measured by the monitoring component on the gateway.

N M
Dro =Y. Y D} (5.11)
j=li=1
The Overall Delay of the system D7, is described in (5.11) as the sum of all application
Delays defined in (5.8) on the system.

5.5 Reliability Model

For the reliability model, only the influence of the Total CPU load on the Reliability of the
system are considered, because driver message rates and access values are unchanged when
migrating.Furthermore, it is considered that the decreased reliability due to added message
rates between gateways is covered by the increased Gateway Load LCw -

The load-hazard model in (Iyer and Rossetti 1986) is adapted, which provides an analysis
of the impact of Load on the probability of the machine to run without any cpu or system
errors. They propose a load dependent hazard or failure rate model z(x) , where x is the
gateway load LJGW . They prove statistically that there is a correlation between increased load
and increased failure rates. They define the hazard rate z(x) as the probability of an error
occurring at a cpu load x + A(x),where A(x) is the added load ,given that there was no failure
at load x.

Considering (5.12) for defining reliability, where R(¢) is a function of the hazard function
z(t) or a function of the constant failure rate A. In the case of the hazard function A can be

replaced with z(LJGW) as it is considered constant in time.

R(I) —e o z(u)du _ e—lt _ e—z(LGw)t (5.12)

52 Application and Gateway Model

Based on the data from (Iyer and Rossetti 1986) the hazard function z(L?W) 1S approxi-
mated to a third-degree polynomial (5.13) where x is between 0.08 and 0.96 in CPU usage,
the min value is 0.0018 and the max value 0.0118

2(x) = 0.0195x% — 0.137x% 4+ 0.0059x +0.0015 (5.13)

Considering a constant run-time of a day or 24 hours, the Gateway Reliability RJGW can
be defined using the Load based Reliability function R(wa) in (5.14). This results in a

maximum reliability of 95.5% and a minimum reliability of 75.35%.
W3 W’Z w
RJGW _ €70.468L§; +0.3288L9"" ~0.1416L5" ~0.036 (5.14)

Based on the gateway reliability of the application R‘;‘ as the product of all the gateway
reliabilities where the application has resources or is deployed on. This can be seen in 5.15
where k represents a resource and peer applications of the tested application i deployed on
gateway j. R’,ffs represents the Reliability of the Gateway [where the resource or peer k
resides. It is worth noting that k represents a unique gateway, so if resource k; and k; reside

on the same gateway /; it is only considered one in the product.

kEA;
R’i“j = RJGW H RReS \where is unique (5.15)

5.6 Parameter Analysis

The tests are performed in a physical environment based on the scenario in (Verba, Chao,
A. James, Lewandowski, et al. 2017) presented in Section 1 to find the parameters of
the application and gateway model . The testing environment consists of homogeneous
Raspberry Pi nodes that have a processing speedup coefficient of pr “d and processing
capacity coefficient chap of 1. When migrating to the cloud, there are two medium flavoured

VM’s on different hosts with varying processing capabilities.

5.6.1 Processing Capacity and Speedup

The Gateway processing speedup pr “d and processing capacity PJ.Cap are calculated in (5.2)

and (5.3) by deploying a reference application for 5 minutes and measuring a stable 4 minutes
the load it creates and delays of the application. For the tests a set of 5 applications with
varying loads on top of 4 types of gateways are deployed on the two VM’s and two Raspberry
Pi’s. The first VM (VM) has 2 VCPU’s and 4GB of RAM on a host with an i5-Intel Xeon

5.6 Parameter Analysis 53

E312 3.1Ghz Processor with a Bogomips value of 6185.94 . The second VM (VM2) has 2
VCPU’s and 4GB of RAM on a host with an 17-4770 3.4GHz Processor with a Bogomips
value of 6784.28. The raspberry pi used is a nr. 2 model b with an ARM Cortex-A53 1.2
GHz quad core processor and 1GB of ram . Two scenarios are considered with the Raspberry
pi, for the first (RPil) its overclocked to 1.2GHz and for the second (RPi2) its left at the
base value of 1GHz. This overclocking changes the Bogomips value of the pi from 697.95
to 732.2. The more performant VM and Raspbery pi is used for the rest of the testing and
evaluation.

For the estimation of the processing capacity P].Cap values, the systems CPU use is
measured when on idle resulting in an L;;;, value of 3.68% for the Raspbery Pi’s and 1.8%
for the VM’s. After this, the load application with varying loads is deployed. This application
mimics the standard applications but it performs the processing tasks on a timer rather then
on received messages making the created load more stable. The deployed loads were 0, 50,
100, 200, 300, 500, and 1000 cycles of the processing task. The CPU load of the Machines is
measured and based on (5.3) the processing capacity of the machines is calculated.

For the estimation of the processing speedup PjSp “d an application is deployed on the
machines and its Processing Delay DZ is measured. The application deployed was given
50,100,250,500 and 700 cycles of the processing task with a message rate of 5 giving the
unit load Lf.‘j values of 0.55, 1.008, 2.448, 4.76 and 6.6126. The processing times of these
applications are then measured and based on (5.2) the processing speedup of the machines
can be calculated.

Table 5.1 Processing parameters of the Machines

Machine VM1 VM2 RPi 1 RPi2
I5-Intex Xeon i7-4770 ARM ARM
Processor 3.1 Ghz 3.4 GH Cortex-A53 Cortex-A53
: ' 1.2 GHz 1.0 GHz
CPU Count 2 2 4 4
BogoMips 6185.94 6784.28 7322 697.95
PP 2.304 2.556 | 0.924
poreed 4.189 4307 1 0.874

J

From these experiments result the data in Table 5.1., where the differences in the machines
can be seen, where the BogoMips is a good indicator of the direction of the processing

coefficients it can’t be used to estimate these.

54 Application and Gateway Model

5.6.2 Driver and Message Loads

The loads of the drivers LE are calcualated on the system by measuring the idle load of the
system with the drivers running but no messages being sent through, after which messages at
different rates are sent to a non-routable queue and the added load on the CPU is measured.
The results are divided with the message rates to get the driver characteristic load for each
message received. This was tested for the RF24 , Bluetooth and the TestingDrivers. The
tested message rates were 1, 3, 5, 10 and 20 messages every second.

To measure the load of routing the messages on the system and through the Karaf
container,the TestingDriver application is used to send messages to an application with a
know Unit load LY j of 1.008 with varying message rates of 1,3,5 and 10. The application
load is then measured and the base load L’Js is calcualted based on the message rates, initial
idle values .Based on (5.6), the value of L, is then calculated.The mean value of the 4 tests
is considered as the reference value.

For the Driver Loads LkD an averages is measured of 1.61 for each RF24 message, 0.73
for each Bluetooth Message and 1.10 for the Testing Driver. The difference in created load
can be attributed to the implementation of the drivers but also the hardware support on the
system. While the Bluetooth driver has a dedicated chip that takes off some of the load by
implementing more of the OSI model on chip while for the RF24 most of this needs to be
done by the driver. For the driver, the load is caused by the measurements and data retention.

The average messaging load Ly, on the system was found to be 0.285.

5.6.3 Processing Delays

To estimate the processing delays Df.} of the system k1 and k2 need to be determined, which
represent the characteristic delay for a certain amount of processing done with a certain
amount of load on the system. From the tests, it can be concluded that the RAM of the
system only comes into play when the system goes above 80% ram use, in which case the
system may crash. Furthermore, the message rate only influences every individual message
by adding load to the system, and when that contribution is taken out no further delay is
added. If the message rate exceeds the Karaf driver capacity or the application capacity and
overload situation is considered. In conclusion, for the system the impact of the Gateway
Load LJGW and the Application Unit Load Lf-‘j is tested within normal operation parameters
of the system where RAM use doesn’t exceed 80% and the messaging rate doesn’t cause
bottlenecks. Testing for these is done through the Gateway monitoring application for RAM

and the RabbitMQ monitoring for queued up messages to validating the message rate.

5.6 Parameter Analysis 5§

el —_—
* RaspberryPi Data T
240 71 ¢ VM Data
’U',;‘ e
£ 200 2
>
8160
O
Q 120 'z‘ﬁr AT AL
7 L A L S
%ﬂ jg{ggggifﬁiﬂiﬁ#iz‘ﬁ~
@2 80 - 2
g
a 40 -
0- 4.5
3.5 ©
CPU Load Unit Load

Fig. 5.1 Processing Delay Variation

For the testing, 4 known application are deployed with unit loads of 0.55,1.008,1.906 and
4.76, and a constant messaging rate of 5 messages every second. The total CPU of the system
and the Application load was measured through the monitoring component. To account for
different scenarios, the CPU usage of the gateways was incraesed through the Load app.
these scenario were deployed on VM1 and RPil and got the points presented in Fig. 5.1.
Using the equation from (5.9) and the performance values from table 5.1 a curve fitting
is done to match the data-points, having k1 and k2 as unknowns. The resulting function
provides the slightly curved form of the two surfaces.

Df, = L. P77 (38.409+0.1885 L9")
D}y = L (9169 4+ 0.0459 LYy) (5.16)
Df gpin = Lf; (38.409 4 0.1885 LFy:))

The resulting equations for DZ- in the general case, for VM1 and for RPil can be seen in
(5.16). The value for k1 is 38.409 and 0.1885 for k2 where the first means that for each unit
of load, 38.409 milliseconds of processing on a reference system needs to be added, while
k2 means that for each percentage of extra load 0.1885 milliseconds of processing delay
for each unit of load on the reference system is added. Considering the processing speedup
pr ¢¢d of the machines, the PRil stays the same while for the Vm this changes to 9.169 and
0.0459.

56 Application and Gateway Model

5.6.4 Networking Delays

The Networking Delay is measured by testing the response time of an application when
running on the RPil and when running on a VM1. The monitoring component measures the
ping values between peers so to compare the response times to the ping values. The latency
between the two gateways was increased using netem (Hemminger 2005) for Linux from 0
to 80ms to match typical cloud-user latencies.

j:GHost
DN=983+ Y Dgji+8.246 (5.17)
k:GMigrated

R
Base

To get the value of the base Routing Delay D} ., and that of the External Routing Delay

DR, the processing delay is subtracted from the total delay which results in the total Dﬁ\J'

From this, measured ping value D¢ g between the two gateways is subtracted which results

in Dgase —|—D§x,. The mean values for local processing where only Dfase

a value of 9.83ms is then subtracted from equation resulting in Dlgxt, that has a mean of

is present with

8.246ms giving rise to the equation for Df‘; in (5.17).

Total Delay Processing Delay

52407 1T

(
-~ N
o o
o o

120

N
o

Processing Delay (m
o
o

o

0 _ :
CPU Load 0.6 Unit Load CPULoad 102 05 Unit Load
Fig. 5.2 Application Delays variation

The graphs in Fig. 5.2 shows the impact the networking delay has on the total delay,
resulting in a set of gateway load LJGW and Unit Load L, threshold values where applications
have smaller latencies on the gateway than on the cloud VM. Considering the P1 points on
the figure, a difference in their values between processing and total delay on both the VM
and the RPi can be seen. For these cases the points are a result of having an app with a LZ
of 1.906 and a gateway load LOw ;j for the RPi of 51.917% and 51.425% for the VM. This
results in a calculated Total Delay of 101.69ms for the RPi and 90.57ms for the VM. The

5.7 Utility Functions 57

actual values were 108.743ms for the RPi and 85.051ms for the VM. This results in a mean
error of 6.29%.

5.7 Utility Functions

Providing a utility function for a system is a crucial part of its development as it provides of
a way for developers to improve or analyse changes in a system. This utility function needs
to represents the needs and health of individuals in the system but should also provide an
overview of how the system is performing as a whole. I the case of the model this utility
function is used to evaluate a set of multivariable characteristics of the system and how they
affect individual application and the system as a whole.

When compiling the parameters that should comprise the utility function these need to
quantifiable based on the model that is proposed and these need to be relevant to the system.
This is the reason that even though the load of gateways is calculated it is not considered a
relevant component and why even though through Green Computing the energy consumption
of the system is important, based on the used model, it is impossible to estimate the value
of this component so it is left out. The parameters that are considered are based on (Verba,
Chao, A. James, Lewandowski, et al. 2017) where some key components and parameters of
some industry based systems are identified.

When considering the general utility function, it can be decomposed into three compo-
nents: delay, reliability and constraint violations. To consider a utility function that can be as
generic as possible, each application is considered to have different preferences to reliability
and delays as well as constraints. To account for this, individual weights for each component
are defined,where WlX denotes the weight of application A; € A for the parameter X where
X € {Delay,Reliability,Constraint_Violations}

The first component focuses on the Delay of each individual application Dj‘j where the
delay component D can be defined as in 5.18 as the sum of all application delays compared
to their reference status multiplied by the individual weight for those applications. The
normalisation of the delays to each applications reference position puts the applications in
an even playing field where large applications don’t have an unfair advantage or priority.
This also helps provide the utility component of the system, that is going to have a rough
average value around or lower than 1.0. Considering D‘i‘}e ¢s as 1 5.19 where the Total Delay
of the application ij is considered in a case where the Networking component va 15 0.0 and
the Processing Delay D{J is calculated for the Average Gateway load and a speedup of 1.0.
The average load of the system can be calculated by Looking at all the adjusted Processing

58 Application and Gateway Model

capacity available on all the gateways and extracting all the required processing capacity by

the applications which doesn’t consider networking requirements.

D =Y pf =y —Rel yybelay (5.18)
i=0 i=0 ij
m LG
Dipos = Li(k1+ k2 J‘Tf) (5.19)

The second component focuses on the Reliability of applications on the system and can
be defined as R as in 5.20 as the sum of all application Reliabilities R’lf‘j compared to the
reference system reliability. As with the previous component the normalisation provides a
view for each individual as compared to itself rather than its absolute value. The reference
value calculation can be seen in 5.21 where the average utility of gateways is considered as a
proxy to the average utility of Applications as this might not be known.

n n
R -
F F Ref \i,Reliabilit
R :ZRi:ZR—Ame’“”y (5.20)
i=0 i=0 Nij
Yy RGW
Rpep = == (5.21)

m

The third component of the utility function represents the constraint violations of the
application deployments Ct/ can be seen in 5.22 where the individual constraint values
CtiDezay and Ctl.Re”“bimy are considered. In the case of this formula, + is considered as a
numeric addition where the Boolean result of the inequality can either be O or 1. In this case

the possible values for any individual Ct” in the case of two components are {0,0.5,1}.

n Ry < Cif+ D < CtP

ctf = zn:th =)
i=0

i=0

Constraint_Violations
5 i : (5.22)

When the individual components of the utility function are compiled, the resulting global
utility function Util” is as seen in 5.23. This represents the sum of all the components. The
problem with this utility function is that it automatically scales with the increase of the fog
system, so in order to scale the results 5.24 is used where the global value is divided by the
total number of apps resulting in the mean utility UtilF . This allows for the comparison of
systems of varying sizes.

Util = D" +RF +ctF (5.23)

5.8 Summary 59

DF + RF +CrF
UtilF = TR (5.24)
n

When deploying large systems or only partial systems as it is in the case of clustered
deployments not all the applications are deployed so Util" "is defined as the sum of local
or clustered partial utilities U tilicl. The actual local utilities can then be calculated when all
the components are deployed resulting in U tilic . Subsequently, these result in the formulas
for the cluster utility and the adjusted cluster utility in 5.25. Here a set of Clusters C; are
considered, where i € C and nlc represents the size of cluster i.

icC yieC DF +RF +CtF

Utilt =Y. DF + Rl +Ctf UtilE = -

n;

(5.25)

When considering highly heterogeneous multi-environment deployment, it can be consid-
ered that certain nodes or gateways will have platform and system capabilities Ca pJGW that are
unique to a subset of these nodes. Furthermore, it can be considered that some applications
have requirements for these capabilities Cap‘;‘ where they could not be deployed in systems
where these capabilities are not met. This component needs to be considered on validation
where an application is only allowed to be deployed on a gateway if the gateway can satisfy
all of the capability requirements of the application. Not satisfying this condition means
that a deployment in not viable and thus its utility function Util’" can be considered 0.0 . To
differentiate between scenarios that cannot be deployed, the deployments are differentiated
based on the number of capability and gateway max load violations that occur where less is
better.

5.8 Summary

When considering CPS and Industrial environments, the latencies of a system and its relia-
bility are crucial components. Estimation and optimisation attempts in Fog Computing and
IoT need to consider as a complete model as possible for their methods so they do not lose
applicability and accuracy.

The model and platform provides a way of measuring and estimating the run-time
parameters and migration benefits of applications in such systems. Based on the model,a
set of novel approaches are proposed for load and delay optimisation through application
migration between the Edge and the Cloud. These allow the estimation and improvement of
certain parameters of deployed applications. Inspired by (Kunz 1991), an experimental load

model description derived from measuring run-time parameters over physical systems has

60 Application and Gateway Model

been developed and used to represent the gateway and application loads, which provide a
more realistic estimation than theoretical ones presented in other papers.

The presented model and utility function serves as a base for the upcoming chapter,
where the focus is on methods for improving the system and individual health of applications.
Variations of the presented utility function are proposed, that have simpler scenarios as
discusses in several papers as well as more advanced cases where traditional method may not

be able to satisfy all constraints and find a solution.

Chapter 6

Deployment Optimisation

6.1 Introduction

When considering the deployment optimisation of applications in any ICT environment it is
very important to identify the characteristics and requirements of the systems that come into
play. Optimisation’s methods designed to work in cloud environments might not be suitable
for Edge or mixed Fog Environments. Furthermore, methods developed for VM-based load
balancing, estimation and optimisation might neglect certain characteristics and issues that
Container based systems might have. And so do Container based systems as they neglect
some of the issues and drawbacks of shared environments.

The presented models and methods might have certain optimisation scopes in mind when
they are being developed, which could be in line with Green Computing trends as in (Zeng,
Gu, and Yao 2018), classical Load Balancing and Optimal Resource Utilisation approaches
as in (Congjie Wang et al. 2017) or they might explore more advanced methods as Location
aware deployments and consider communication delays between peers, clusters and cloud.

In this chapter different optimisation techniques will be presented that aim to solve certain
issues when it comes to the deployment of application is a large scale heterogeneous IoT
environment. Some of these are designed to solve Execution time based issues such as the
Random Clustering and Allocation method while more advanced methods are designed to
improve on existing solutions by analysing partial or full results and explore improvement op-
portunities through more meaningful search space reduction through clustering and resource

allocation.

62 Deployment Optimisation

6.2 Problem Description and Categorisation

The problem of allocating Application or Services to Gateways, Machines or VMs have been
explored in (S. Kim, C. Kim, and JongWon Kim 2017). When considering the Off-Line
approach to deployment optimisation rather than a load-balancing, on-line or on-the-fly
approach to deployment the number of possible methods that can be applied increases as
the constraints on decision time are less stringent. More complete models can be used to
determine the health of deployed applications and their hosts as well as more advanced goals
that can be set. The optimisation tasks increases in size as well when deploying hundreds of
workloads, services or application onto hosts that not only fit their needs or constraints but
also work towards improving the global health or utility of the system.

The use of more advanced Application and Gateway models as described in Chapter 5
has the downside of adding extra complexity to the deployments. This could be the main
reason why some proposals as (N. Wang et al. 2017) have used more simplified and less
interconnected models. This is also a reason why using VM or Container based solution may
seem more appropriate in certain situations as resources are fully allocated to one container
and VM and varying response times and reliabilities do not occur or are reduced when other
applications are modified or deployed.

Due to the high interconnectivity of certain components there are several difficulties and
limitations to the proposed methods. The main one with the most impact to this methods
is the highly interconnected nature of applications with varying number of gateways, peers,
resources and edge connections. This increased interconnectivity means that the deployed
elements can be considered as a graph and simply separating the environment into the
smallest number of connected graphs the size of these will still be too large for certain
methods and would not cause great improvement inthissystem. Because of this calculating
the exact utility of certain deployment is impossible to do without having the whole system
deployed. To account for this the Ut—il‘;‘ utility is defined for apps that accounts for the partial
utility of the app A; where only the known components are considered on deployment.

A positive side to the high interconnection of these components is the possibility of using
these to make more meaning clusters or cooperative sets based on these connections and
their impact on the individual and global utility. A part of the presented methods focus on
finding these meaningful connections and reducing the search-space to a solvable amount but
putting up a hierarchy of connections and custom distance measurements and disregarding
less important connections or ones that could be considered as noise.

The allocation problem of assigning the highly connected application to a set of gateways
can be considered as a set of deployable Application A; € A where i € 1,...,N and Resources
R; € R where j € 1,...,M assigned to asset of Gateways G; where i € 1,...,P where S,

6.2 Problem Description and Categorisation 63

denotes the possible set of permutations ¢ : N,R— > M given the Utility function presented
in Chapter 5,a case can be considered where the Applications have at least one external
connection that influences their and the global utility. In this case the problem can be
simplified so that it is analogous to the Quadratic Assignment Problem 6.1or even the Linear
Assignment problem (LAP) presented in (Lawler 1963) where the Gateways are analogous

to the Locations and the application are analogous to the Facilities.

N M
Y Y Cipg Xij Xpq 6.1)
i,j=1p,q=1

In this case a non-zero interconnected utility function is considered for the applications,
where Application and Resources are considered as Entities AUR € E . Taking into account
the Koopmans-Beckmann Formulation (Burkard et al. 1998) from 6.2thisutility function can
be presented in a special simplified case as equivalent to this formulation. Here f;; represents
the number and value of interdependent parameters between application i and j as analogous
to the flow between facility i an facility j. The latency or the change in reliability between
gateways k and / can also be considered as analogous to the distance between locations d;.
The utility cost of placing application i on gateway k is analogous to b;; which represents the
costs of placing facility 7 at location k.

N
pun Y X fidoweti) + X bioti ©.2)

Considering these analogies it can be assumed that the optimisation problem can be
broken down in a special case where the impact of other applications on the gateway load
and thus the utility is not considered when computing b;;. These make the problem more
difficult to solve than the traditional Quadratic Assignment problem. The QAP problem has
been proven to be an NP — Comple and NP — hard problem so when considering the QAP
problem as a special case of this allocation problem, it can be concluded, that this problem is
both NP — Complete and NP — Hard as well.

Finally, due to the nature of the optimisation being an allocation problem most opti-
misation methods that rely on climbing a hill or a look for a valley would not work on
such a problem as the allocation of resources lacks these characteristics. Finally, due to the
highly interconnected nature of the problem, a ripple effect can be seen even with the single
movement switching operations between placements where even applications that have no
connections with these are affected and their utility changes.

Due to the scale of future industrial setting and thus Fog and IoT deployments in these

scenarios the requirements for Distributed solutions to solve the deployment problem are

64 Deployment Optimisation

crucial. One of the major disadvantages of Global optimisation problems it that with the scale
that comes with these problems and the NP-Hard nature and non-polynomial complexity,
methods need to be proposed that reduce the search-space or put constraints and bounds to
the system in such a way that it remains solvable within a reasonable time frame.

In the upcoming sections the methods will highlight attempts at randomly reducing the
search space and the size of problems as well as looking at methods of meaningfully reducing
these while considering the characteristics of these systems and how they work. This second
steps also attempts to solve the problem of platform lock-in by considering applications have
requirements and that gateways have a certain set of capabilities. A random clustering and

allocation might leave the system in a state where no viable solution can be found.

6.3 Overview of Approaches

The approaches used to try and solve the above-mentioned problem range from a black
box approach used through the Global Genetic Algorithms Optimisation to the Tuning and
Weights based Clustering method that is proposed. These methods are combined, compared
and tested in different environments to show their advantages, disadvantages given certain
models and methods. A high level view of the proposed methods can be seen in Fig. 6.1.
Here a. represents the modified global GA approach, while b. looks at the app to app
connection and resource based allocation as well as the random allocation in the case of
weights values of 0. The direction ¢. and d. showcase the proposed methods components
which are either initialised through sampling or using some initial weights

The graph based analysis of the connections and distanced of applications and their
deployments on gateways is central to the proposed methods and their rationale. The reduces
improvement in utility when deploying systems through GA with the increase in size as
well the exponential increase warrants the need to break up the problem into smaller pieces.
The random allocation and clustering proposes the most rudimentary methods of doing this,
but shows that in some cases even this method outperforms the global GA just because it
can dig deeper when it comes to the outcome. The same can be said with respect to the
allocation methods where not distributing the gateway improves the results just by removing
load constraints.

The connection based resource and application clustering attempts to remove some
of the problems that are inherent with the random allocation by choosing peers based on
their connections and by allocating gateways based on resources and access. This method

maintains the requirements of the previous one with the allocation method maintaining the

6.3 Overview of Approaches 65

Fog System
a d.
b. ¢
— Sampling Initial
] i

% ; — ngght_ Weights

Bk — Identification - —

g - L= | > < — ——

% ———— b 0 I—P ——N —

Global || & Clustering 5 reeeas —
. 3z : = —
GA = = : = .
S = Weights =

3 E e ¥ _g. — g froeeed Clustering

a _ i Training o]

o e E . —_— = - I _

<L e — E = i
S — — = n(\z """" = ’ =

“Resource AIIoca=t=i0n Fennnns B —_-_ . = -
1 = -_— =
Loceil GA = Resource Allocation
Direction

p Local GA
Decision

1y

Deployment

Fig. 6.1 High level view of Methods

integrity of gateways and the cluster sizes being considered within reasonable values based
on previous test.

The training and weights based clustering and resource allocation method looks at
providing a generic solution for application allocation on gateways with varying utility
functions and scenarios with the condition that the parameters of gateways and applications
need to have a relation with the output of the utility function. This method aims to analyse
existing solutions and to reinforce good directions in clustering and allocations through a
custom weighted distance measurement. The training of these weights falls into the category
of Costly Global optimisation or Expensive Black-Box problems due to the difficulties in
finding the global Utilf,, from the set of local utilities YN | Utilcy,-

To be able to account for a varying number of models and utility function a step forward
from application connections and resource locations needs to be done when clustering and
allocating resources. For these, a custom distance function is needed to account which
parameters contribute to two applications collaborating and residing on a certain gateway. A
set of best solutions is used and correlation calculation based on (Pearson 1895) are applied
to measure these. The clustering is then attempted using an extended DBSCAN (Ester et al.
1996) method that uses elements from OPTICS (Ankerst et al. 1999) to allocate apps that
behave like noise. The issue with this method can be the overconfidence of certain directions
and some high correlation number that may only be noise. The iterative method aims to

66 Deployment Optimisation

solve some of these problems. This method can also works similarly to a random allocation
method when false parameters are considered as important due to bad initial solutions.
Each method builds on the previous one, as all methods employ the a GA method that is
designed to attempt to allocate the applications inside the clusters onto the gateways. The
connection and resource share based allocation build on the random method as it attempts
to find more meaningful clusters and allocate better gateways, all of this in just as fair
manner. The final solution then attempts to account for a larger set of models where other
characteristics might determine whether two applications collaborate or are deployed to a

certain gateway.

6.4 Deployment validation and Utility Calculation

The deployment that are generated using the global and Clustered GA method can sometimes
allocate more application to gateways that the gateway has capacity for or more than the fair
share of the Cluster. Furthermore, when considering application Requirements and gateway
capabilities, wheter a gateway can actually house the apps needs to be considered. The
validation is done by clearing previous deployments, then deploying the apps to the gateways
and calculating the resulting gateway load for each gateway of interest. If this load is larger
than 99% for Global Clustering or larger than the Base Load plus the cluster share of the
gateway than the validation has failed.

With small deployments and those that do not consider requirements this is not an issue,
but producing valid individuals becomes an increasingly challenging task when considering
large scale deployments. Requirements based deployments put even more strain on the

system and this issue becomes more prevalent.

6.5 Modified Genetic Algorithm based Method

Genetic Algorithms (GA) are evolutionary and meta-heuristic optimisation methods that
are based on Darwin’s theory of evolution. These typically rely on three basic operations
to improve generations. These are inheritance, mutation, selection, and crossover. GA also
has the advantage over other traditional optimisation methods that the concept behind it is
easy to understand and to modify the parameters involved (Hoque et al. 2017). It is also
able to avoid being trapped in minimum points by and employs a probabilistic selection
rule rather than a deterministic one. It has been previously shown that such methods work
better than Hungarian methods given a random initial deployment in most cases as in (Verba,
Chao, A. James, Goldsmith, et al. n.d.). This method allows for the use of a single Utility

6.5 Modified Genetic Algorithm based Method 67

function through which local and global optimal solutions can be reaches as in (Minh et al.
2017; Zeng, Gu, and Yao 2018; Hoque et al. 2017; Congjie Wang et al. 2017). A further and
probably the most important characteristic of the GA method is that it does not assume any
characteristics of the system, but rather considers it a black box.

Taking all the positive of GA it is in its essence designed to solve optimisation problems
that have a defined hill or valley it can climb and works well with similar methods. Due to the
odd nature of the presented problem the core GA components need to be modified similarly
as they are in (Bhondekar et al. 2009). The characteristics of the problem when modifying
the method needs to be considered as traditional ways of doing crossing and mutation might

affect the system too much as rendering these as useful as the random population generation.

ALGORITHM 1: Modified Genetic Algorithm

1 Set popSize < 500; genMax < 1000; pop < genPop(popSize);
2 while genCount < genMax do

3 sortPop < sort(pop , Cost(G,A));

4 newPop < sortPopl1 ... popSize*0.2];

5 newPop < newPop + genPop(popSize*0.3);

6 for [indil,indi2] in sortPop[1 ... popSize*0.6] do

7 for i = 0 1o size(indil) do

8 | newlIndili] < randomSelect(indil[i]indi2li));

9 newPop < newPop + newlndi;

10 for indi in pop do

11 if random() < 0.2 then
12 indi[random(1,len(indi))]< rand(1,gwCount);
13 newPop < newPop + indi,

14 pop < newPop

Our version of GA takes can be seen in Algorithm 1 where it takes an initial population
size of N for which it generation a new random population of size N is generated. After this,
for a pre-determined number of iterations or until there has been no change in the utility for
many generations the algorithms continue the internal loop. In this loop, individuals with
the highest utility that meet the validation criteria are first selected and if not enough are
found the remaining spaces are filled with individuals with high utility but who fail to meet
the validation requirements. The size of this group is pre-determined as a fraction of the
total population and is discusses in a later subsection. The next step is the crossing given
a certain change of some of the best individuals after which the mutation of some of the
best individuals with another varying chance is performed. Finally,a set of new random
individuals is added to the population so local minimum point that might have missed could

be found. This new population is the forwarded to the new iteration.

68 Deployment Optimisation

The GA used for deploying clustered applications unto their respective gateways works
in the same way as the global version with certain parameter changes and the validation of
solutions being modified. A final difference is linked to the utility function they optimise
which does not represent the realistic utility function but just a derivative of this containing
all the known and controllable parameters of the apps.

An individual of a population is an array of integers where the indices represents that ap-
plication id A; and the value at each point represents the gateway G; to which the application
is deployed as seen in 6.2.

| Application 3 | [Application 2 | Application 6 |

e =

| Application 4 |

Gateway 3
Application 5 icati
[App | [Application 7] ===z

J Gateway 4
/_J

y

4

e,

2 [Application 1 — | Application 8 |
1

2

Gateway 1

Gateway 2

Gateway |d

Deployment: 311111213214

Applicationld: 1 2 3 4 5 6 7 8

Fig. 6.2 Chromosome used for GA

Generating a new random population is done by creating several individuals for that
population. This is done by randomly assigning a gateway to each individual app from the
set of gateways, this is done by shuffling a set of the available gateway and allocating the
first one to the app.

The elitism component takes the top individuals from a generation and saves then for
future generations, inthiscase this is done by evaluating the resulting utility if a generation is
deployed but also verifying whether a deployment is valid. The elitism has two components,
where the first one looks at those individuals that are valid and have the best utilities while
the second component considers that if there were not enough individuals that satisfied the
validation process then those individuals need to be considered that have a good utility but
might not be valid as a lower utility might mean a move towards validating the deployment as
well. This step is mostly done for very large scale and requirements based deployments where
a case might arise so that thousands of generations still failed to produce valid individuals.

The crossing of individuals in the method is done by first getting the top N individuals

from the generation after which a crossover individual is computed, that has a chance of

6.5 Modified Genetic Algorithm based Method 69

either having a chromosome from one individual or the other. This method can be extended
to cross certain regions of these applications and pick sets but for this implementation as
which applications fit together isn’t known this would limit the generality of the method. The
crossing can be seen in 6.3 where how these might be picked is shown.

N
w
—_—
—_—
N
w
N
N

Individual A

e |
[
=
[
|
e
Ty
e
]
s
Ty
e
Ty
=
Ty

_;'-4:\;- 50/50

New Individual “. Chance

LS N
N
—
—
w
w
N
I

w
N
—
—
w
S
N
N

Individual B

Fig. 6.3 Crossing used for GA

Mutation works in a similar way to crossing as a set of N elite individuals are selected
from the current generation go through the chromosomes of the individual and using a
random number generator and mutationChance constraint the gateway of the application is

deployed to is either changed or the old one is kept. This can be seen in 6.4.

IndividualA| 2 |31 1|1]2]3]2]4
_;/__v"\"_\;"\/":/"\/"\;":4-_\; 9010
New Individual | 2 {3 | 1 [11313 |24 %% once
A A & & & & & y
——— L Random
Gateway ID's| 11213 14 [—>,* Select

Fig. 6.4 Mutation used for GA

When doing testing, two stopping conditions are typically used. The first and most basic
condition is the number of generations condition, which is the most common GA condition
where the algorithm is allowed to run for several generations.An extra condition can be added
to this where it is allowed to run over this amount if no valid individuals have been found yet.
The second stopping condition and the one usd in the tests is focused on stagnation. It looks at
whether the GA has found any improvements to the total utility within a pre-defined number
of generations. If no valid individuals were found this, as in the previous case is neglected.
Both these cases neglect their stopping conditions if no valid individuals were found. To

make surethismethods terminate safety stops are introduced at very large generation counts.

70 Deployment Optimisation

Considering the Time complexity of such an algorithm a number of parameters influence
it, such as the number of generations G , population size P , and chromosome length L .
Another component that is considered that other methods don’t is the Chromosome Height.
Where the length is the number of applications and the height is the number of gateways.
These change separately and the gateway changes at about 1/3 of the rate of the app. All
of these determine the total run-time of the System. Taking these into account Random
generation, mutation, crossing has a time complexity of O(P x L) or O(n?) while getting a
set of elite individuals has a time complexity of O(P? L) or O(n?) as the size of the heap to
which each individual is compared to needs to be gone through to be able to select the best.
This is in line with the work in (Nopiah et al. 2010) where they found that some traditional
GA algorithms had a Time Complexity of O(rn’) to O(n’). Considering that all of these
methods only work on a fraction of the population except the elitism, a conservative Time
Complexity of O(n?) can be deducted.

This modified version of the GA algorithm and the subsequent version of it that is used for
deployment of clustered applications to their allocated gateways is a good benchmark due to
its generic nature and black-box approach to solving the problem. All methods are assessed
compared to this one on how well and in how much time they solve certain problems.

6.6 Clustering

The main purpose of clustering is to reduce the computational time of the GA algorithm
while trying to find an acceptable solution to the problem. This is done by reducing not
just the length but the height of the chromosomes inside a generation. The main challenge
with clustering is finding the inflection zone where the maximum integrity of the system is
retained while a large enough speedup of the code is achieved, so that its deployment and
run-time are feasible or desirable. Considering two disconnected graphs and their individual
deployment and thus resulting utility function would have a reduced processing time but
still retail most of the original systems integrity. Due to the highly connected nature of the
problem, certain connection need to be severed in order to make these disconnected graphs.
Minimising the number of relevant severed connections and creating relevant clusters is one
of the key components of the proposed methods.

The four types of clustering methods are increasing in complexity and processing time,
but except the random one they are based on DBScan or Density based Scan algorithm that
is one of the most common algorithms used is Graph analysis for identifying clusters. The
presented methods vary in not just their complexity but also on the number of assumptions

that need to be made in order to use them.

6.6 Clustering 71

The Time Complexity formula from GA (ibid.) that provides the O(n’) complexity can be
modified to look at how the chromosome length and size change when the large deployment
is divided into cluster. With a varying cluster size a reduced complexity of O(n® x log(n))
is desired. When this is repeated for a number of clusters but whose size is smaller than
the chromosome length a average run- count of log(n) can be considered, resulting in a
total approximation of the Time Complexity of O(n®*log(n)?). This results in a large
improvement of the optimisation time, especially at larger sizes. This is a very good reason
to consider clustering even with the disadvantages and search space reduction that comes
with this. This advantage is maintained even if the added processing time caused by the

CLustering and Allocation methods is considered.

6.6.1 Random Clustering

ALGORITHM 2: Noise Sort
1 Input Apps|[],Clusters[];maxPts
2 for i = 0 to size(Apps) do
3 minDist <~ MAX_FLOAT; minCls < 0; alloc < false ;
4 for j = 1 to size(Clusters) do
5 if size(Clusters[j]) < maxPts then
6
7
8
9

tmpDist <— CalcDist(Clusters[j],Apps[i]);
minDist <— min(minDist,tmpDist);

minCls « j;

if minDist < MAX_FLOAT then
10 Clusters[minCls].add(Apps[i]);
11 else
12 for j =1 to size(Clusters) do
13 if size(Clusters[j]) < maxPts then
14 Clusters[j].add(Apps[i]);
15 alloc < true;
16 break;
17 if /alloc then
18 newld = Clusters.CreateNewCluster();
19 Clusters[newld].add(Appslil);

Random clustering is the fastest clustering method, but it is also the one that does not
attempt to place peers close to each other or close to their resources and endpoints. It is
designed as a benchmark for the subsequent optimisation methods and is also used as an

initialising agent for the training algorithm.

72 Deployment Optimisation

The algorithm for random clustering is a special case of the Noise Sort algorithm in Alg.
2. where the distance function from all noise nodes to the clusters is 0 and in this case the
initial cluster size is O as well. Here, a maximum value is needed for the cluster sizes and
the method will take applications at random and fill up every cluster to its maximum size
while attempting to make no clusters smaller than the min size, redistributing these at the
end. This method has a very low time complexity of just O(nlogn) where n is the number of
applications as it only needs to go through the applications once and then partially through
the clusters. It is the fastest method but the one that in the case of hard requirements and
meaningful distances between apps might result in a very bad solution or one that does not

have a valid deployment.

6.6.2 Distance based clustering

The Distance based clustering works by considering that application behave in a similar
fashion as people do and utilises DBScan from Social Network Analysis where it looks at
connections between peers and considers that these connections show an interest of working
together and deploying them close to each other would improve on the system. In this case
only the app to app connections are considered.

ALGORITHM 3: Weighted Clustering

1 Input Apps[],minPts, eps ;

2 Set visited < Array[]; noise < Array[]; clusters < Array[];
3 for i =0 to size(Apps) do

4 if /visited.contains(i) then

5 visited.add(i);

6 neighbours <— getNeighbours(Apps[i],eps,minPts);

7 if neighbours.size() < minPts then

8
9

‘ noise.add(i);

else
10 points <— expandCluster(neighbours,Apps,eps,minPts);
11 clusters.add(points);
12 noiseSort(clusters,noise,Apps);
13 for i = 0 to size(Clusters) do
14 if Clusters/[i].size() < minPts then
15 points = Cluster[i] ;
16 delete(Clusterl[i));
17 noise.add(Points) ;

18 noiseSort(clusters,noise,Apps);

6.6 Clustering 73

The modified DBScan method can be seen in figure 3 where the method is given a minPts
value which is the minimum cluster size and an eps value for which is a minimum distance
at which another application is considered a peer, which for 1, means that an application is
directly connected with this one, while for two they wold have and application connecting
them. These connections are directional by nature but for this method they are considered
unidirectional. The method works by going through all the points, checking if they were
ever visited and if not checking how many neighbours they have, and if they have more
neighbours than the minimum value they form a cluster. This cluster then goes through an
expansion phase where all the nodes of the cluster look for additional number of neighbours
of size larger or equal to the minPts value. If such neighbours are found they are added to
the cluster, and this continues until no new points are found. These points in the cluster are
then subsequently added to the visited points and are not verified later. If a point fails to find
enough neighbours or is not part of any cluster it is considered a noise point.

When considering clustering, for social media analysis and other scenarios noise is a
normal thing and those points are just discarded. This is not acceptable for the application de-
ployment case, so the next step looks at removing those clusters who had enough neighbours
but whose neighbours belonged to other clusters. These are removed and added as noise.
This noise then needs to be allocated to certain clusters. This is done by adopting methods
from the OPTICS (Ankerst et al. 1999) algorithm where the average distance between an
app and the connected clusters are calculated and the app is allocated to the nearest cluster
or if none is found then its allocated to one at random. This method take out the need for
a maxPts constraint to be added as the clusters are created based on their peers and these

connections need to be retained.

6.6.3 Weights and Attributes based clustering

Weights and attributes based clustering works in a similar way as the connection based
clustering described above, with the difference than rather just looking at one characteristic
of applications it looks at all of them. For this model the parameters of interest were defined
as the Distance, Resource Share Rate, Constraints Similarities, Message Rate Similarities,
Unit Load Similarities, Utility Weights Similarities and Requirement Similarities. The
selection of the weights can be done manually in the case of a Gray-box scenario where the
details of the system are known or the subsequent training algorithms can be used to try and
find these values.

When considering the parameters hat are considered for the custom clustering function
the existing app and gateway parameters need to be modified as shown in the equations from
Equations (6.3..6.9). These equations show how the parameters are calculated between apps

74 Deployment Optimisation

al and a2. These parameters are summed up in Equation 6.10 where the weights fall into the
the types Typec;s € {Dist,Share,Constr,MsgRate,ULoad,UtilW,ReqSim}.

1
Clspiss = 6.3
Dist ConnDist(ay,a;) (63)
Y Resources,, € Gateways,,) Resources,, € Gateways,,
Clsspare = (6.4)
Y Resourcesg, Y Resources,,
i€ConstraintTypes . .
Clsconsir =1 — Z |Constraint, — Constraint,,,| (6.5)
Clspmsgrare = 1 — |MessageRate,, — MessageRate,,| (6.6)
Clsyroaq = 1 — |UnitLoad,, — UnitLoad,, | (6.7)
ieUtilityWeights . .
Clsyrw = 1 — Y UtilWeights!, — UtilWeights,,, | (6.8)
Require,, € Require Require,, € Require
Clsegsim = ERCdr e € Reuires, LRequiren, © Requirea (6.9)
Y Require,, Y Require,,
icTypes
Clssun= Y, ClssW<" (6.10)

Further improvements to the clustering algorithm, especially based on its Processing time
can be done by limiting the scope to which applications look for neighbours. In the base case
they look for neighbours in the whole application set which might be hundreds of individuals.
A slight modification would be to consider neighbours that are at a certain distance from the
application. If the applications that are considered for the neighbourhood test are limited
to be at a connection distance of 4 the total run-time of the method is reduced significantly
without affecting the results.

As a conclusion, Clustering methods can greatly reduce the processing time of opti-
misation methods through the reduction of the search space but if the aims is to have a
meaningful reduction more resource intensive methods need to be applied that in some cases

can outweigh the benefits of clustering but in others might give better results than the GA.

6.6 Clustering 75

6.6.4 Eps Value Estimation and Improvements

Having to specify a starting eps value for DBScan is one of its disadvantages, one that
OPTICS solves, but at a great cost as the optics algorithm takes a lot more time to run than
the DBScan one which at large scales might cause problems. To try and solve this without
employing OPTICS a histogram of the distances between apps is generated from which the
minimum and maximum eps values an the desired steps can be deducted. This method is
described in 4.

ALGORITHM 4: Eps Estimation and Result Validation

Input parameterWeights; Apps ;
Set distances <— new Array[]; histogram <— new Array[10];
for i = 0 to size(Apps) do
for j = 0 1o size(Apps) do

if i /=j then

‘ distance.add(get Distance(Apps[i],Apps[j],parameterWeights));
min < distance.getMin(); max <— distance.getMax();
band = < (max-min)/10;
for i = 0 to size(distance) do
location = (distance[i]-min) mod band;
histogram[location] <— histogram[location]+1;
12 iStart<— histogram.getMax();
13 for i = 0 to size(histogram) do
if i>iStart and histogram[i]>Apps.size() then

‘ iStop < 1i;
16 return [iStart*band,iStop*band,(iStop-iStart)*band/10]

1
2
3
4
5
6
7
8
9

To evaluate the results from each iteration the quality of clustering algorithms outputs
needs to be evaluated. Here, there are two extremes, either almost all the applications
went into a single cluster or a very large number of applications were generated where a
good portion of which have their own cluster. To account for this the method looks at the
distribution of clusters which should be as even as possible without too large clusters and
without too small ones. The iteration with the best distribution is retained. The algorithm has
two stopping conditions, one is if the iteration hit the maximum value and the other is if two
results have been on the extremes after a viable solution was found. Extreme solutions are
not considered as viable, because they either make resource allocation impossible or they
subvert to the global GA.

These improvements increase the processing time for the algorithm but also make it more
generic and gives fewer constraints that need tuning. Variations of the method can be used

76 Deployment Optimisation

on scenarios and data-sets that are known to improve the run-time while maintaining the

generality.

6.7 Resource Allocation

Resource Allocation focuses on allocating Gateways or shares of a Gateway to clusters in
such a way that the upcoming Cluster based GA will produce not just a viable solution, but a
solution that improves on the existing global utility. In order to do this, a number of things
need to be considered. The first is to make the method as fair and even as possible given the
situation. This means that clusters should have a very similar Resource Share Rate based
on their Cluster Load. This balance is very high in the Random Allocation and it becomes
increasingly worse with the more advance methods as the right allocation becomes more of a

priority than the even or balanced one.

6.7.1 Random but Fair

The Random but fair Resource allocation, as mentioned above looks at allocating resources
to gateways in as even a manor as possible without considering any other parameters while
maintaining gateway integrity as much as possible. This allocation method can be considered
a component of the upcoming methods, or more precisely, this method is used to allocate
the noise gateways that are left after the initial set of allocations which for the Distance and
Resource Share method would be the cloud Gateways and for further methods those in which
no app and subsequently no cluster is interested. The simple algorithm for this method can
be seen as a version of the Noise Distribution Algorithm from 5 where the clusters apps have
no affinity to any gateway. This is the same situation as having the weights set to 0.

The method works by going through each gateway and verifying if all its processing
resources have been allocated and if not a cluster with the lowest share rate is found and the
gateway is allocated to that cluster in full. Variations of this method could allow gateways to
be shared among clusters for an even fairer distribution, but due to the fragmentation of the

gateways the solutions might not be ideal.

6.7.2 Shared Resource Based Allocation

The shared resource based allocation looks at the resources that are linked to a gateway and
attempts allocate gateways to clusters that have the most resources on that gateway. This
method also considers that the resource share of the gateways is important as the resulting

share is divided by the resource share if the allocates share is larger than 120% of the allocated

6.7 Resource Allocation 77

ALGORITHM S§: Gateway to Cluster Allocation Noise Distribution

1 Input Gateways|[]; Clusters[]

2 for i = 0 o size(Gateways) do

3 if Gateways[i].getFreeLoad() > I then

4 if Gateways[i].getFreeLoad() < 25 and Gateway[i].ClustrCnt() > I then
5 ‘ Gatewaysli].expandClusterShares();

6 else

7 minShare < MAX_FLOAT; minld < O ;

8 for j = 0 to size(Clusters) do

9 tmpVal = Clusters[j].getShareRate();

10 if tmpVal < minShare then

11 ‘ minShare < tmpVal;minld < j

12 Gatewaysli].allocateFreeResource(Clusters[minld]);

load. The share values are multiplied by a factor of 10 when the minimum share rate of
1.2 is not fulfilled. This gives clusters that haven’t fulfilled the minimum requirements an
edge over those that are fit in the system. Also while there are clusters that haven’t met the

minimum share rate other clusters are not allowed to demand resources.

6.7.3 Weighted Property based Resource Allocation

To allocate gateways to clusters a similar distance needs to be defined as in the application
clustering section. In this case the Gateways distance to the Clusters or more precisely to
the Application of the clusters is central. In the random allocation, this component is not
considered and in the case of Resource share allocation only the resource is considered.
When considering the parameters hat are need to show the preference of an applica-
tion or a cluster of applications to a gateway the ratio of these parameters need to be
modified as shown in the equations from Equations (6.11..6.15). These equations show
how the parameters are calculated between app al and gateway g2. These parameters
are summed up in Equation 6.16 where the weights fall into the the types Typeajo. €
{ResShare, BaseToU Load, Per fCapToU Load, SpeedToU Load ,Capab}. How this is calcu-

lated for Clusters is shown in Equation 6.17

Y Resources,, € Gateways,

Allocgesshare = (6.11)

Y Resources,,

2 1 ;
Ly L,—Ming,

- 6.12
100.0 Maxy, —Miny, | (6.12)

AllocpaseTorLoad = 1 — |

78 Deployment Optimisation

Cap . .
PP — Minpcap L' — Min;
Alloc =1—|-~ . “ 6.13
PerjCapToULoad |Ma.xPCup —Minpcop Maxy, —Miny, | (6.13)
Speed . .
P: —MlnPSpeed Ll —Mll’lL
All =1 |- - “ 6.14
OCSpeedToU Load | MaxPSpeed — MinpSpeed MCDCLM — MiI”LLM ‘ ()
Require,, € Require
Alloccapay = L Require, € Requiregy, (6.15)
Y Require,,
i€Types
Allocsyum =Y, Alloc;W (6.16)
) i€Types
Allocly,y =Y, Alloc;W/ o (6.17)

The algorithm 6 works by first creating a list of all the gateways each cluster is interested
in with their specific share rate or distance function. After this is compiled the algorithm
loops until all clusters run out of gateways of interest and the noise sorting or random but fair
allocation is done. In the loop there are several special cases considered. First, if a cluster
has received 90% of the average share rate of the System and more than 1.2 all the gateways
are removed from its preference list.

The main body or the loop of the algorithm goes through all the valid clusters, which then
select the gateway that they are most interested in. All the other clusters that are interested in
this gateway then compete for a share. Only clusters that have their distance or share rate
within a fraction given as a constant are considered. The number of clusters that can share
a gateway is also limited by a fraction constant that is given, so even if some gateways are
within the threshold if they are outside that constant they are not considered. After a gateway
is allocated it is removed from all clusters that are interested. If the selected gateway falls
outside the threshold than it is not considered.

6.7.4 Correlation and Weights based Resource allocation

Correlation and Weights based Resource allocation is a variation of Distance based clustering
method where the distance between one gateway and a cluster is not just defined by the share
rate, but rather a set of variables that are given a certain importance based on a weighting.
The varying parameter based distance supported allocation is crucial to the similar style
clustering as they are complementary methods. There is little reason to only consider
advanced clustering methods and then just allocate random gateways to these as they would

6.7 Resource Allocation 79

ALGORITHM 6: Weighted Property based Resource Allocation

Input Gateways|[]; Clusters[]; globalShareRate; clsShareRate;
Set EmptyClusters <— new Array[]; ClsInterrest <— new Arrayl[];
allocatedGWs <— new Array[]; for i = 0 to size(Clusters) do

1
2
3
4 for j = 0 to size(Gateways) do
5 if distance(Clusters[i],Gateways[j]) != 0 then
6 \ ClsInterrest[i].add(Gateways|[j],distance(Clusters[i],Gateways[j]));
7 while Clusters.size() < EmptyClusters.size() do
8 for i = 0 to size(Clusters) do
9 if Clusters[i].getShareRate()>0.8*globalShareRate or
ClsInterrest[i].size()==0 then
10 \ EmptyClusters.add(Clustersl[i]);
11 else
12 maxGwld < ClslInterrest[i].getMaxGw() ;
13 maxDist <—ClsInterrest[i].getMaxVal() ;
14 competeCls <— new Array[];
15 for k = 0 to size(ClsInterrest) do
16 if k/=i and ClsInterrest[k].contains(maxGwld) then
17 ‘ competeCls.add(k);
18 topCls <— competeCls.gerBestCls(clsShareRate);
19 if Clusters[i] not in topCls then
20 | clsInterest[i].remove(maxGwld);
21 else
22 clsInterest.removeAll(maxGwld);
23 distributeGwToClusters(topCls,maxGwld);

24 GatewayToClusterNoiseSort();

defeat the core purpose of these methods which is to put the application to their most preferred
gateways within the best conditions possible in a sensible amount of time. It is also worth
noting that if the application in a cluster are allocated randomly the clusters preference to
gateways will be week, so the algorithm will not be able to perform as well as it could with
proper application clustering.

This version of the resource allocation proposes an initial allocation set for the clusters.
These allocations could later be revisited by analysing failed Clustering GA results to see
which component or parameter of the allocation failed and increasing the weights of those
parameters and having two or more clusters re-negotiate their gateways with an incentive
to reach an agreement. These fall under the iterative methods that can be used to improve
tweak the algorithm.

The resource allocation methods provide the backbone for the system as they allocate the

gateways to the clusters which could very well be random on initial deployments or in the

80 Deployment Optimisation

case of poorly selected weights. Besides the distance based allocation the main task of this
method is to make sure that not just the best possible result is found but allocations are made
that produce viable deployments as the whole deployment direction is considered a failure if
just one cluster fails.

6.8 Proposed Methods

6.8.1 Connections based Clustering and Resource Allocation

Network Analysis Clustering and Allocation in Fig. 6.1 b. is designed to support the work
that was done in (Verba, Chao, A. James, Lewandowski, et al. 2017) where a number of
use case scenarios were analysed with a varied number of Graph analysis methods and
an extensive characteristics analysis was conducted to analyse their choice of peers and
gateways as well. Through this research it has become obvious that when considering
clustering and deployment for the presented Delay optimisation Scenario the parameters
that most commonly linked application together were their connections and their choice of
gateway was determined by whether their resources were deployed on that gateway or what
that gateways latency was to those resources.

Due to the method sole interest in the connection of application for clustering the method
used to find neighbours and clusters is a lot less resource intensive than the parameter and
characteristics ones as this one can easily be solve by a Dijkstra algorithm and as such is
easily distributable and scalable being the best method for optimising typical scenarios. The
sorting of the noise applications that do not fit into any clusters can also be done more easily
as they could be considered individually and ping clusters for their parameters and then join
these when preferred.

The resource allocation based on shared resources poses the same advantages as with the
clustering as finding gateways that host the applications resources is a lot less processing
intensive that finding ones that have desirable parameters/characteristics. This also allows
this method to be distributable and is thus better scalable. The allocation of Cloud Gateways
and those that have no resources allocated to them is done in a similar fashion as with the
clustering with these being allocated by preference or to the gateway with the lowest share
rate.

The final part of the method involves running a Clustering GA method where the applica-
tions inside a Cluster are deployed onto the gateways allocated to this cluster while making
sure the deployments are valid. This is the final step in the solution and it shows how well the

6.8 Proposed Methods 81

method worked. Compounding the best individuals from the clustered deployments results

in the global deployment and finally the complete and global utility function.

6.8.2 Iterative Correlation based Clustering and Optimisation

When considering more advanced or difficult deployments such as the ones presented in
(Zeng, Gu, and Yao 2018) and in the utility model in chapter 5 only considering certain
parameters when clustering applications and choosing peers as well as allocating resources
might be detrimental. In order to be able to apply the clustering methods to a larger scope
of models and problems there needs to be a generic template on how to measure distances
between peers and resources and how to allocate these. This approach aims to solve some of
the problems inherent with making initial assumptions of the system and proposes methods
of deducing these characteristics and then enforcing them when considering Deployments
and modifying them when needed. This method is the most processing intensive one as it
has a number of high complexity components, but it is the only one that is generic enough to

be used all across this problem and use-case domain.

6.8.2.1 Overview of Method

A general view of how this method works can be seen in Algorithm 7 where the compo-
nents interaction and work-flow is shown in detail. This method can be expanded to add
intermediate tuning components and fault and fail based intermediate iterations which would
reduce the computational time of components but it would still fall under the same category
of problems and fit in the presented diagram.

The correlation between parameters and deployments is calculated by taking a set of
possible best-case deployments and looking at the relation between parameters when they are
deployed together and when they are not. In this case the correlation is calculated between a
Boolean value, id they are deployed together or not and a double value which is the parameter
relation value. Due to this method there is a lot of noise when calculating the correlation,
and because of the uncertainty of the quality of the solution the correlations might be very
small or not representative of a good direction at all. The correlation parameters are the
ones mention in the previous subsections for weighted Clustering and Weighted Resource
allocation. The data for the correlation is generated by creating a list of applications for each
application that are deployed together, calculating their parameters and adding them to the
dataset with a Deployed value of 1. After this data is added with the applications not in the
list and a Deployment value of 0. The data is filtered in such a way that only unique data
points are added and no duplicate entries such as A; relation to A, and A, relation to Aj.

82 Deployment Optimisation

ALGORITHM 7: Iterative Correlation based Clustering and Resource Allocation

1 Input weights[]; applications[]; gateways|[]; corrTrainer;

2 Set stopStatus < false ;

3 clusters <— new Array[]; bestDeployment <— new Array[]; bestUtil <— 0.0;
4 while !stopStatus do

5 [results,clusters] <— weightedClustering(weights,applications);
6 if results.status == "success" then

7 weightedResourceAllocation(weights,clusters, gateways);

8 [results, deployments[]] <— GADeployment(clusters);

9 if results.status == "success" then

10 [tmpUtil,deplld] = getBestDeplUtil(deployments);
11 if tmpUtil>bestUtil then
12 \ bestUtil<— tmpUtil; bestDeploymetn < deplld;
13 corrRes <— calculateCorrVals(get Best(deployments,5));
14 corrTrainer.updateParameters(corrRes,tmpUtil);
15 weights <— corrTrainer.getNewWeights();
16 else
17 | corrTrainer.set Failed(results);
18 else
19 ‘ corrTrainer.set Failed(results);

6.8.2.2 Correlation Calculation

The correlation is calculated using the Pearson R Correlation (Pearson 1895) where R[x,y]
is considered as the correlation between parameter x and parameter y. The Pearson R
Correlation is considered as opposed to the Spearman’s Correlation (Spearman 1910) based
on the work done in (Hauke and Kossowski 2011) where it is stated that the results of
the Spearman’s Correlation can be less reliable with some data sets but might find certain
correlations that the Pearson’s misses. This is due to the understanding that Pearsons’s looks
for Linear Correlation between variables while Spearman’s is looking for a Monotonic one.
Furthermore, Spearman’s method requires the Ranking of data which implies knowledge
about the data. As a conclusion, the Pearson’s correlation is used as it requires less implied
knowledge of the data and has a lower chance of offering a false positive for the correlation.

The formula for the correlation can be seen in Eq. 6.18 where n represents the total
number of data-points, x and y represent single data points, X and y are the mean values of
these data points while S, and Sy, represent the standard deviation for x and y. The mean
of x and y is calculated by adding all the values and dividing them with n. The standard

deviation for a parameter is based on Eq. 6.19. This is done by first calculating the sum of

6.8 Proposed Methods 83

all differences squared between each individual point and the mean of that parameter. After

this the sum is divided by (n — 1) where n is the total number of data points.

n PR PR
x Oy

Sy = i(xi —x)? (6.19)

The following calculations are completed for all parameters and in relation to the deploy-
ment status which is the property noting whether two application are deployed together. An
example of this can be seen in Table. 6.1 for the Delay Optimisation scenario where the
resource share and distance measurement parameters have a lot higher correlation than the
other ones, even though this values is still under 0.5 so it is a week correlation at best. The
reason for this is partially due to the resulting sub optimal parameters and the high levels of
noise in the data. Here, all the 7 parameters for app to app relations and the 5 parameters

between app to gw relations are shown.

Table 6.1 Example correlation results

Clustering Parameters
Dist Share Constr MsgRate | ULoad UtilW | ReqSim
0.159041 | 0.277061 | -0.005882 | -0.021282 | -0.002517 | 0.0 0.004135

Allocation Parameters
ResShare | BaseToULoad | PerfCapToULoad | SpeedToULoad, | Capab
0.382969 | -0.006193 -0.042599 4.46E-19 0.0

Taking these correlation values, the algorithm is applied, that looks at the highest correla-
tion and applies a constant processing Limit to see which other parameters are within range
of the best ones. After this is done, the selected correlation values are given adjusted based
on the pre-defined penalties for certain parameters and then they are adjusted in such a a way
the the sum of weights is equal to 1. These parameter specific weights are then used do the
Clustering and Resource allocation with the specification that those parameters that are not
considered are not calculated as well when clustering or allocating.

6.8.2.3 Weight Tuning Method

The Weight tuning method falls under the category of Costly Global optimisation (CGO)

methods. This method is considered a CGO because of the costly computation that goes into

84 Deployment Optimisation

verifying the validity of a tuning step through the clustering, allocation and actual deployment
of the applications based on these. This method works by controlling the processing limits
that are considered when calculating the weights and by adjusting penalties for certain
parameters. This is done through a number of steps and taking into account the location of
certain fails and the cause of these. These steps are Probing, Underfitting, Overfitting and

Undefined Stagnation Resolution.

ALGORITHM 8: Weight Tuning

1 Input correlationResults[]; ClusteringStatus; DeploymentStatus;
previousWeights[]; maxStep; failCnt; utility; prevUTtility; utilDiffLim;

Set exit < false; adjustments <— new Arrayl[];

if failCnt < maxStep then

w N

4 if utility < prevUtility+utilDiffLim or ClusteringStatus=="Failed" or
DeploymentStatus == "Failed" then

5 if uder fitAppCheck(weights) then

6 ‘ adjustApp <— under fitCompensationApp();

7 else if over fitCheck(weights) then

8 ‘ adjustApp < over fitCompensationApp();

9 else

10 \ adjustApp < randomAd justmentsApp();

11 if uder fitGwCheck(weights) then

12 ‘ adjustGw <— under fitCompensationGw();

13 else if over fitCheck(weights) then

14 ‘ adjustGw < over fitCompensationGw();

15 else

16 ‘ adjustGw <— randomAd justment sGw();

17 weights <— probeDirection(correlationResults,adjustApp,adjustGw);
18 return weights

19 else
20 | return exit < true;

The main body of the algorithm can be seen in Algorithm 8 where an initial set of
deployments with a best utility function and a set of correlation parameters are considered.
If no comparison exists or if the new solution is the best so far then the Probe sequence
continues with the current direction. If the received solution fails the direction stop criteria
then a change needs to be made to the existing setup. In this case the results and system are
analyses to determine the cause of stagnation or worse solution which could be Underfitting,
Overfitting or Undefined. If the received solution fails the full Stop Criteria then the algorithm
is terminated and the best viable solution is used.

6.8 Proposed Methods 85

The direction stop criteria is used to verify whether the current direction of the tuning is
a correct one or new directions need to be explored. This condition returns true if it is the
first iteration of the method and false if the attempt failed for any reason. Furthermore the
method returns false if there is only one parameter considered and the tests on that results
have come in as well as in situations where the weights have not change significantly enough
based on a constant compared to previous attempts or the improvement of the utility function
that was made is too small to warrant further probing.

The full stop criteria is triggered when the direction stop criteria returns a false response
and the maximum number of failed attempts from a single point have been reached or the
maximum number of total iterations has been reached. The algorithms counts the number of
times the method attempted to find a new minimum point from an existing best point. If it
finds a new minimum point the fail count is reset.

The probing method is called when all the criteria are satisfied but also when the direction
criteria is not and changes have been made through one of the three changing methods. In the
second case the probing method would have its constants changes or modified and it would
use the best solutions data to find the new weights as the current solution is considered a bad
direction. This method works by applying the correlation calculation mentioned above and if
new weights are found based on the constraints given a new deployment is attempted.

The Underfitting method is concerned with verifying whether the solution that is at-
tempted is too generic and whether that might be the problem why the system is stagnating
or no better solution can be found. It verifies whether this is the case by looking and the
compensated values of the weights and whether their mean is below a certain set threshold.
If this condition is met then the method will attempt to correct his problem by Increasing the
processing Limit by a constant that is intensified or multiplied by the current fail count.

The Overfitting Method looks at verifying if the current solutions are focusing too much
on a parameter and if that is the reason for the stagnation or bad results. It first verifies that
this is the case by looking at whether any parameter has their weights higher than a given
constant. If such a case is found then the processing Limit is decreased by the same constant
as before and multiplied by the current fail count. A further step is taken by adding and extra
penalty to the parameter in question. The penalty is based on a penalty constant.

The Undefined Change Method is used when the reason for the stagnation is not known
or cannot be found. This happens if all previous validations fail. In this case the processing
limit is kept the same. The average weight of properties is calculated and given a negative
penalty to the high ones and a positive penalty to the low ones in the first attempt and the

other way around in the second attempt.

86 Deployment Optimisation

When and how these methods are used and to which set of weights app to app or app
to gateway can be altered based on the results of the deployment as well based on which
part failed. Redoing clustering weights if the found clusters were very uneven or if the
clustering itself failed is an option. Redoing the allocation weights if the Resource allocation
or deployment failed would also speed up the system by not requiring a full analysis or it
could be done when a failure occurs.

The iterative correlation method, while allowing the user to forget certain constraints and
allow the algorithm to just run on its own has significant disadvantages when it comes to the
impact on the processing time as highly complicated and resource intensive algorithms needs
to run multiple times to train parameters or evaluate existing ones. Despite this, this method
is the only one that is designed to work with an unknown system with varying parameters
and objectives and attempt to make assumptions about that system in a combination of
probabilistic and deterministic approaches.

6.8.3 Sampled Data based Correlation and Weight Calculation

Considering the high processing time and complexity of the Iterative clustering an correlation
calculation, a case could be made that there is no reason to analyse the whole system but
rather taking a representative chunk out of the system and analysing the behaviour of those
parameters as well as looking at just a small portion of the clusters deployment for later
analysis might yield similar results with a major reduction in complexity and processing time.
The problematic component is figuring out what a representative sample means, how small
or large it has to be.

The creation of the initial sample can be done in several ways. The first and most low
cost but risky method is just selecting a fraction of the application that need to be deployed
on the system, and considering them as a cluster, while allocating resources to them based
on the weighted allocation method and to point where they match the resource share of the
system. This method is seen in 9. The second method of doing this is a more deterministic
approach where the general characteristics of the large scale system are considered and these
are replicated in the small scale deployment, not just the share rate, but application types sizes
and connections. If the consequent deployment fails or exceeds the maximum allocated time
for the run a small sized cluster is selected until a valid deployment is reached. The worst
case scenario being one application being allocated to one gateway in a valid way. When
this initial deployment is successful the reasons for it are scale, even if only the resource
selection in the case of one App and larger cluster sizes are attempted until a successful

cluster deployment is found that is of an appropriate size.

6.8 Proposed Methods 87

ALGORITHM 9: Sampling Algorithm

1 Input initialWeights[]; apps[];gateways[]; maxFailCnt; reqSize; minClsSize;
2 Set failCnt < 0; clsSize < reqSize;

3 while failCnt < maxFailCnt do

4 cluster <— generateRandomClusterO f Size(apps; clsSize);
5 assignGwToCluster(cluster,gateways);

6 [results,deployments[]] <— GADeployment(cluster);

7 if results == "Success" then

8 ‘ break;

9 else

10 if clsSize/2<minClsSize then

11 ‘ clsSize < minClsSize; failCnt < failCnt + 1;

12 else

13 | clsSize < clsSize / 2;

14 failCnt < 0O;

15 while failCnt < maxFailCnt or size>=reqSize do

16 corrRes <— calculateCorrVals(get Best(deployments));
17 weights <— getNewWeights(corrRes,adjustParams);

18 cluster <— createCluster(apps;clsSize;weights);

19 assignGwToCluster(cluster,gateways,weights);

20 [results,deployments[]] <— GADeployment(cluster);

21 if results == "Success" then

22 | clsSize < clsSize+clsSize/(2+failCnt); failCnt < 0;

23 else

24 failCnt < failCnt + 1;

25 adjustParams <— modifyAd justment Parameters(weights,failCnt);

26 return corrRes <— calculateCorrVals(getBest(deployments));

Using this cluster and deployment the GA is run with a now higher termination count,
generation size and population count which would result in good deployment solutions for the
set. Based on this set, the eps value is calculated and scale it based on the tests conducted in
(Verba, Chao, A. James, Lewandowski, et al. 2017) to account for the increase in connections
with the increase in scale.

In the subsequent iterations a sampling of the resulting clusters is considered as a reference
for further deployment and analysis. The number of clusters is determined by the selected
fraction of sampling size and determines the accuracy of the evaluation and results. This
can also be done in two ways, the first being a random selection of clusters another being a
deterministic selection where the ones are selected that have the highest individual application

utility while retaining System characteristics and resource share rates. After these clusters are

88 Deployment Optimisation

selected they are combined and their results are analysed as with the global method presented
in the previous chapter.

Due to the sampling nature of this approach there is no guarantee that the selected
individuals behave characteristically to the whole system. This method may also make the
impact of positive feedback loops more prominent and have a wider effect on the system. On
the other hand, because this system allows for solutions to scale back to sizes where finding
viable deployment becomes feasible and then scale up again, this approach might have a
higher chance of finding solutions in a difficult highly constrained setting, as the previous
method requires viable solution to arise from the first initial deployments.

This method attempts to solve some of the complexity and scalability issues with the
previous one by sacrificing some of the generality that comes with it. It is also an attempt to
provide a solution for instances where finding any viable individual or deployment becomes
a difficult task in itself.

6.9 Summary

When considering the presented methods, they have a varying level of implementation
complexity, processing run-time and generality. Methods like the Random Clustering and
Allocation, Distance based clustering Share based Allocation and sampling based Iterative
optimisation are distributable with slight modifications so in theory could be used to optimise
systems with thousands of applications and devices.For such systems it is becoming apparent
that a higher level of separation might be needed where these systems might need to be split
up to different Fogs as their high level oh heterogeneity and varying utility requirements might
create systems for which no single distance function or allocation method may apply. Here,
the creation of smaller fog deployments is needed, where their utilities and characteristics
are similar enough so that their deployment warrants more advanced methods as the ones
described in this section.

The Processing costs of the methods and their generality are compared in Fig. 6.5. From
these it is obvious, that in order to gain a certain sense of generality added processing power
needs to be allocated. Here, while the Global GA is the most general method it is still the
most resource intensive an while the random allocation is the simplest to implement and
fastest it may only work in certain cases and might cause undeployable allocation when
Requirements or hard constraints are introduced into the system.

In this chapter, clustering methods and one generic method were presented that aim to
solve the QAP of allocating interconnected application to gateway and maximising their

utility as well as the system utility. A number of clustering methods have been explored

6.9 Summary 89

Random '
Clustering (b.)| >K Random Clustering

Random
*Resource Conn

Allocation .
Clustering (b.)
)l(Connection Clustering

, | Sampling | Sk weighted Res. Alloc

>K Shared Resource Allocation

---------------------- v Start (6.))= "~~~ Generaity
>“:>|<Weighted Clustering
Eps Estimation >K 5 :
= lterative
> Component 8 ' Training (d.)
8 : Genetic
Approach = Alogorithm (a.)

Fig. 6.5 Overview of Methods

with various capabilities and complexities. These method will be evaluated in the upcoming
section based on the specified use cases where the differences in applicability and processing

requirements will be shown through rigorous testing and comparisons on scalability tests.

Chapter 7
Evaluation and Analysis

The evaluation and analysis chapter follows three distinct evaluation processes. These are in
line with the components presented in the methodology section. The tests are designed to
accomplish two things. First, a set of tests is conducted to determine the testing parameters
like, testing scenario generations, model and testing parameters. Secondly, these tests aim to
evaluate the proposed methods and their components in such a way that their impact on the
scalability, quality of the outcomes and execution time can be determined.

A first set of subsections is designed to provide an evaluation scenario and to analyse the
accuracy of the proposed application and gateway model. This is done by proposing four
industry based use-case scenarios from which scalability and interconnectivity parameters are
derived using graph analysis tools. After these parameters are found a set of single, bundled
and migration deployments are performed to evaluate the proposed model’s accuracy.

After the model is evaluated, the testing parameters and objectives of the optimisation
methods are fixed. First, the three optimisation scenarios and their utilities are defined and
the GA algorithm is evaluated to find the parameters where it performs best. This is done so
that the proposed methods quality is evaluated and not the quality of the modified GA.

The subsequent validation tests can be split into three categories. The performance
analysis looks at comparing the proposed methods to some standard scenarios or variations
to show how the resulting utility and execution time changes with the scale and scenario
alterations. This provided as overview of how results are achieved. The scalability tests
look at how the proposed methods function on higher scales where the only interest in
in the outcomes and execution time, the path towards those is not relevant. These tests
are there to show the large-scale affinity of the proposed methods and the advantages
of clustering in general. The component evaluation section is designed to showcase the

individual contribution of the method components in both the execution time and the resulting

92 Evaluation and Analysis

outputs. Here a number of varying methods that have the same objectives are compared

while fixing every other parameter to showcase their capabilities.

7.1 Analysis and Replication: AME Case Study

7.1.1 Use Case Description

The presented use cases are based on the 4 physical workstations and proposed automation
and control systems that are in concurrence with the requirements of the industrial partner
and those presented in Industry 4.0.

7.1.1.1 Physical Systems

The Dimension Testing Metrology station contains a Coordinate Measuring Machine (CMM),
alongside some smaller measurement devices, and an environment monitoring station for
accurate temperature and humidity control which is essential for accurate measurements as
well as a monitoring screen and a parts organising station. This workstation is designed to
measure tolerances on finished components as well as bending and torsion. The key factors
here are linked to quality assurance, environmental monitoring and Energy Control and
monitoring.

The Metallurgy Metrology workstation contains a Hot Mould Machine, a Polishing
Controller, Digital Microscopes, a part organiser and monitor. This workstation is used to
take weld pieces, mount them into plastic moulds, polish and analyse these for integrity. The
key factors here are part monitoring, tests logging and quality control.

The Stress testing workstation contains a Compression testing, Burst testing and Stretch
testing instruments as well as parts organiser and monitor. This station is used to test the
integrity of welded tubes under pressure through the burst tests, as well as component
characteristics through the compression and stretch or pull tests. The key components are
regarding parts monitoring and tests logging together with energy monitoring and quality
control.

The Assembly line contains several ABB Robot arms with 2D vision capabilities together
with welder units, a conveyor belt with position sensors, controls and bar code readers, an
input and output part organiser, safety proximity laser curtains and emergency stop buttons.

The assembly line is used to weld and assemble components going through the line based
on their part numbers. The key components are part monitoring as well as quality control

through the metrology stations, safety and energy monitoring and control.

7.1 Analysis and Replication: AME Case Study 93

7.1.1.2 Application Use Cases

The design of the application use-cases are based on the existing hardware and sensor
environment as well as guidelines presented in (J. Lee, Bagheri, and Kao 2015). The main
purpose of these systems is to map flow based energy control, part monitoring access and
environmental control on top of existing hardware with a realistic composite application
approach. Each scenario has a different approach to the topology of the connections. The
part Logging system is designed to be a more connected design while the energy monitoring

and access control scenarios are more hierarchical or resemble fractal and tree based graphs.

7.1.1.3 Part Logging and Flow Monitoring

This system is designed to monitor the progress of parts through the assembly and metrology
environments as well as gather data on parts production rate and use per environment as well
as receive controls from the energy optimiser on where to assign parts.

The virtual connections of the system can be seen in Fig. 7.1 where each component or
application is shown with its respective cloud, storage, local access and device connections.
The graph shows that the applications are highly connected between each other while the
devices usually belong to one controller/orchestrator or reader with no direct machine to
machine (M2M) communication between devices.

The use-case contains a main parts flow monitor and a status monitor connected to a
local component for each room which then communicates with each individual machine
type controller and reader. There is a local repository for parts status monitoring for each
workstation as well as local access. Finally, there is a cloud monitoring connection for saving

data and advanced analysis.

7.1.1.4 Energy Monitoring and Control

The system is designed to monitor the energy use of devices and machines for each worksta-
tion and the factory as well. It also controls the power supply of machines based on parts
flow and existing optimisation scenarios. These parameters are shown on displays and saved
to a cloud source.

The virtual connections of the system can be seen in Fig. 7.2. The diagram shows that
the connections in this scenario are much less clustered and more hierarchical than in the
previous scenario especially for the left half, which is the control region, while the right is
the monitoring and optimisation part.

The presented use case contains a cloud connected main power controller connected to

local controllers that have local access and that in hand orchestrate the individual devices.

94 Evaluation and Analysis

D Device

(") Application

9 Region

—} Storage

=
& cow

Fig. 7.1 Parts and Flow Monitoring subsystem

This component is linked with the Energy Optimiser which is connected to the flow monitor
and Main Energy Monitor.

The main monitor is linked with local monitors that save data to local storage and show
info on local displays while saving data for further analysis on a common Cloud Energy
Monitor endpoint.

7.1.1.5 Access, Safety and Environment Control

This system is designed to take care of controlling and logging access on machine and rooms
as well as controlling safety and environmental variables inside the rooms. Cloud logging
and control as well as local access and displays are connected to these components.

The graph of these connections can be seen in Fig. 7.3 where thegraph has a similar
structure to the one in Fig. 7.2 , but containing more local access points and a much more
hierarchical system which is designed for layered safety in the case of access and security.

This scenario contains a main access manager that controls the room access, parts access
and machine access modules that in hand orchestrate the room modules and their devices. The
access manager is linked to the safety controller which in hand is linked to the environmental
controller to initiate safety protocols if needed. The safety controller is linked to individual
room components that in hand control the safety devices and sensors available. The environ-
mental components orchestrate ventilation, temperature and humidity control through factory

level components. It also has specialised units for the high precision environment control

7.1 Analysis and Replication: AME Case Study 95

D Device
(") Application

9 Region

— Storage

=
& cou

Fig. 7.2 Energy Monitor and Control subsystem

requirements of the Dimension measurement workstation which increases the number of

sensors and splits the humidity and temperature as well as the ventilation.

7.1.1.6 Combined System

The combined system seen in Fig. 7.4 looks at connecting the separate systems for a fully
functioning factory floor. This is done by linking certain main components in these systems
through a layered architecture design.

The main connected components that are the part flow controller with the energy use
optimisation that connects to the machine part controller which then relates to the Safety

Controller and the Access Manager.

7.1.2 Analysis Parameters

When considering the analysis of IoT systems, there are several parameters that need to
be examined that may be interesting for two reasons. The first reason is for replication
and scaling of these systems when testing how optimisation algorithms perform with larger
datasets. The second reason is to identify characteristics of these systems that can be used
to better select and create new optimisation approaches. Finally, as proposed in (Voutyras
et al. 2015) these parameters can be used to calculate or estimate latencies, reliability and

redundancies of entities and the system. For the analysis, the system is considered a graph

96 Evaluation and Analysis

D Device

(") Application

9 Region

—} Storage

—

Fig. 7.3 Access, Safety and Environmental Monitoring and Control

G = (V,E) where V denoted the vertexes, nodes denote the applications, storages, cloud
entities, and regional access points while E denotes the Edges or connections between these.

Considering V; € V;, € V where k denotes the type of Node and i denotes the number or
id of the node and V. denotes the set of all nodes of the same type. The edges are denoted
by E; j € E where i and j are the id of the connected Nodes and E; ; denotes the edge itself

where E; j = E; ; due to the undirected and unweighted nature of the graph.

7.1.2.1 Replication Parameters

The replication parameters are simple properties of the graphs that look at key parameters that
are used to replicate the structure of the graph to allow for the scaling of certain use-cases.
Application Resource Use looks at what is the average number and distribution of device,
region, storage and cloud connections from applications. The resource use of an Application
is denoted by Riyp’;e where Type is the resource type and App is the application id. Equation

7.1 defines this resource use as a sum of all connections of an application to a type of device.

Eppp.i

T
Ripy = Y, Vi€ Vrype (7.1)
1

Clustering of Applications looks at how certain applications group together into clusters

and what is the average size and number of these clusters and how interconnected they are.

7.1 Analysis and Replication: AME Case Study 97

o
B
o B oy e A S
n Device === === /"0
o e
(—__) Application - oL .
9 Region o o 9 —=.
- 2T o
= Storage o o
— g e e a
o = &0
. Cloud """ o |78

Fig. 7.4 Combined System

Cluster Clust; is defined, where Application V; € Clust; as defined by a clustering algorithm
like K-Means or DBSCAN (R. Xu and Wunsch 2005).

Connection Locality looks at what are the chances of one application connecting to
resources and devices from the same gateway and how many external resources and ap-
plications it uses. The distribution of these types of connections is crucial to replication.
Three types of locality {Local,Cluster, External} are defined, where V; € Lock*¢! so that
all elements V; are on the same gateway, V; € Locgl““” so that all elements V; are part of the

same Cluster and V; € Locf””"“’ as in Equation 7.2.

Loclkfxternal S VO (Locllgocal U Locgluﬁe") (7.2)

Inter-App communication looks at the average number and distribution of connections
between applications deployed on the system. Together with clustering and locality, this
component helps create a more realistic environment. The connections of an Application
are denoted by Cﬁ;elf where Area denotes the region to which the application connects to
which can be local or cluster level. Equation 7.3 defines these connections as a sum of all

connections from each region coming or going to the application.

98 Evaluation and Analysis

E

iApp
Cﬁ;elf = Z V; € Loc}™, where Vy,, € Locp™
i
Eis (7.3)
iApp
Cf;; = Z V. e Locf’”, where Va,, & Locfx’
i

7.1.2.2 Graph Parameters

The graph parameters are designed to show certain characteristics of these systems that
can be translated to parameters of interest, such as reliability, latencies, clustering and
interconnectivity. These characteristics are used in (Newman 2003) to analyse a varying
range of systems such as the World-wide web, social networks, citation interconnectivity and
others.

Connectivity checks if there is a route route(i, j) from any node V; in the graph to any
other node V; in the system. After verifying connectivity,the distinct connected graphs are
analysed. This parameter aids in clustering of these connected graphs as well as shows
separate subsystems. The use-cases are all connected graphs so this parameter, while
important in the analysis, in the case is overlooked when discussing results.

Average path lengths look at what is the average distance between two nodes while the
graph diameter looks at the maximum distance. These parameters can be used to determine
simple average and maximum latencies and hops within a network while comparing them to
node and vertex counts can help determine QoS parameters. The minimum distance from
node V; in the graph to any node V; can be ca computed through the Dijkstra’s algorithms
and is denoted with routeys;, (i, j) while the average path in a system is defined as in Eq. 7.4

and the diameter or maximum shortest route is defined in Eq. 7.5.

YV XY routemin(i, j), where i # j
size(V)(size(V) — 1)

AVGRoute = (74)

Diameter — max(max routev: (i. 1)). where i ‘ L
l ' ViEV(VjeV rou Mln(l?.])), l7éj ()

The clustering coefficient looks at the average number of triangles Tri(V;), or three
node pairs with each node being a member of a system. This number is divided by the
total number of possible triangles, adjusting for the size of the graph. The sum of these
values is the Clustering Coefficient (CCF) of the graph as can be seen in Eq. 7.6. This

information can be used to determine how tightly coupled a cluster is. This parameter could

7.1 Analysis and Replication: AME Case Study 99

be useful in determining the optimisation of subsystems using divide and conquer techniques

in optimisation, especially latency optimisation.

- Tri(V;)
cer = Z size(V)(size(V) —1)

i

(7.6)

The graph degree distribution (GDD) looks at how many nodes have a certain number of
connections in a system compared to the maximum possible number of connections. The
number of nodes that have a certain degree can be calculated based on Eq. 7.7 where k is the
edge count.

V E
GDDlk|=Y Y Eij=k (7.7)
i

This gives a view on how the connections differ between systems and provides the main
comparison factor when categorising the system as well as verifying generated systems.

The graph betweenness centrality (GBC) of a node is calculated by counting the number
of shortest paths routey;,(i, j) that contain a node and compare it to the maximum and
minimum values present in the system. This implementation looks at all the paths whose
length is equal to the shortest one. The equation 7.8 shows how the centrality of one node is
calculated.

vV v
GBC(V;) = ZZV, € routeysin(j,1), where i # j,1 (7.8)
j 1

The distribution looks at how many nodes have these values between a certain range.
This parameter is key in determining high importance nodes in the system as well as critical
single points of failure. This characteristic is also important when comparing systems and
verifying the generated graphs.

7.1.2.3 Network based Categorisation

There are several network types based on their connection typology as suggested in (ibid.),
each having their real world equivalent and their set of attributes. The use-cases are then
compared to the behaviour of known models such as random-graphs, Markow graphs, non-
scalable networks, small-world models, Barabas-Albert and other growth models.

With each network having its own characteristics, they require different approaches when
certain optimisation or analysis attempts are made such as clustering and single point of

failure rerouting.

100 Evaluation and Analysis

The analysis and categorisation approximation of the system will allow for model specific
method to be applied which may reduce run-times and reduce the diminishing returns seen in

similar systems, such as in (Heller, Sherwood, and McKeown 2012).

7.1.3 Replication Data Analysis

The data analysis for the 4 virtual scenarios from the application resource use and locality
point of view can be seen in Table 7.1. broken down to device, storage, cloud and local
interfaces and computed through the equation in 7.2. Each component has a local and
external factor which looks at the locality of these connections with the local being the
gateway hosting most resources while the external represents other gateways.

The connections between application are described in Table 7.2. Where they are broken
down to local connections, cluster connections and external connections based on Eq. 7.3
and Eq.7.4. These are important when designing systems when considering approaches that
focus on connections remapping SDN based router rewiring and other similar methods.

The clustered connections refer to the clusters in Fig. 7.5 and looks at all the connections
that are not to the same Gateway but are in the same cluster, while the external ones look at all
connections to external gateways not on the cluster while the total shows all the connections.

Determining the number and size of the clusters for the analysis that was used for the
app data in Table 7.2. was done using a Density-Based Clustering Scan (DBSCAN) on the
graphs.

The configuration of the scan requires a minimum number of points for a cluster which
for this case is 8 and an epsilon which is a maximum distance between two peers which in
the graph is 1. The minimum points value is determined by the structure of the graph. A
more highly connected graph would require higher values to return distinct clusters rather
than one big cluster.

The resulting clusters can be seen in Fig. 7.5 where (a) is the Parts and Flow Monitoring
system, (b) is the Access Safety and Environmental Control and monitoring subsystem, (c) is
the Energy Monitoring optimisation and Control subsystem and (d) is the Combined System.
Individual application clusters are coloured the same and applications that are not part of any
cluster are coloured white.

This clustering method made for an average cluster size of 7.42, a maximum of 22 and
minimum of 1. The method resulted in an average of 2.25 applications not being assigned a
cluster. This method works well in (d) and (b) where the density of nodes is more uniform
and the results are weaker in (a) where the tightly coupled nature of applications results in
one big cluster. In (c) due to the varying density, the top part of the graph is well clustered
while on the bottom it identifies two small clusters and two unassigned nodes.

7.1 Analysis and Replication: AME Case Study 101

Table 7.1 Resource Use Parameters

Scenario
Prop Eneray Parts and Access and Combined
Flow Security Systems
Loc | Ext | Tot | Loc | Ext | Tot | Loc | Ext | Tot | Loc | Ext | Tot
Device

Min | O 0 0 0 0 0 0 0 0 0 0 0
Max | 7 0 7 2 0 2 8 1 9 8 1 9
Avg | 287 | 0.0 | 2.87 | 1.25] 0.0 | 1.25 294 | 0.05| 3.0 | 23 | 0.01 | 2.32

Min 0 0 0 0 0 0 0 0 0 0 0 0
Max 1 1 2 1 1 2 1 0 1 1 1
Avg | 0.12 | 0.18 | 0.31 | 0.04 | 0.04 | 0.08 | 0.05 | 0.0 | 0.05 | 0.07 | 0.07 | 0.14
Storage
Min 0 0 0 0 0 0 0 0 0 0 0
Max 1 0 1 1 0 1 1 0 1 1 0
Avg [025] 0.0 | 025]0.16 | 0.0 | 0.16 | 0.11 | 0.0 | 0.11 | 0.17 | 0.0 | 0.17
Local Access
Min 0 0 0 0 0 0 0 0 0 0 0 0
Max 1 0 1 1 2 2 0 2 2 2
Avg [025] 0.0 | 025] 0.2 |0.08 029|038 | 0.0 | 0.38]0.26 | 0.05 | 0.32

[—
N

7.1.4 Network Analysis

The subsystems are analysed based on the parameters in the previous section where the
connectivity path length and diameter are the more basic properties of the system. For these
tests, all the systems are made up of connected graphs, but this test would allow a fast
clustering and easier group based optimisation in cases such as the combined system if there
were no connections between subsystems. The average diameter is 7 hops, while the average
path length is 4.15. The maximum diameter is in the combined system with 9 as well as the
highest average path length of 5.23. The diameter and average path length (APL) increases
with the size of the cluster and are reduced with the increase of clustering as in (c¢) with a
Clustering Coefficient (CCF) of 0.01 having an APL of 3.84 and the more tightly clustered
(a) with a CCF of 0.09 has an APL of 3.29.

Looking at the CCF of the applications on not just the systems but also on the subgraphs.
The average CCF of the systems is 0.0425 varying between 0.016 and 0.09. If the clusters
are taken by themselves the average CCF of clusters that have a size larger than 2 is 0.208
with values between 0.09 and 0.46.

102

Evaluation and Analysis

Table 7.2 Application Parameters

Property Parameters
Local | Cluster | External | Total
Energy Monitoring and Controll
Min 0 0 0 0
Max 4 6 1 8
Average | 1.375 | 1.25 0.125 2.75
Parts and Flow Monitoring
Min 0 0 0 2
Max 5 11 2 15
Average | 2.0 1.5 0.33 3.83
Access and Security Control
Min 0 0 0 1
Max 6 4 1 8
Average | 1.66 0.55 0.11 2.33
Combined System
Min 0 0 0 1
Max 6 14 3 15
Average | 1.64 1.21 0.32 3.17

The Graph Degree Distribution of the systems can be seen in Fig. 7.6. The number of
nodes displayed is relative to the maximum number of nodes to allow a comparison between
the graphs. For the systems, the highest node count values were at 1 connections, which
is due to the device and resource links which are usually used by one application. The
maximum values for these are 58 for access (7.5.b), 37 for parts monitoring (7.5.a), 56 for
Energy (7.5.c) and 150 for the combined system (7.5.d). The highest number of edges are on
the combined system with 18 and the second is on the Parts monitoring with 17. Every Node
has at least one connection as the connectivity of the graphs show as well.

The Graph Betweenness of the systems is shown in Fig. 7.7. The centrality value is a
relative value to the maximum available on the system which is scaled to account for network
size differences. The relative node count is scaled to the max values as well.

The node in (d) with the highest absolute centrality has a value of 40745 possible shortest
paths crossing this node. This high number is also due to the implementation of the algorithm
where the minimum distance between two nodes is calculated and all paths of the same
lengths are considered. These values are 3763 for the Energy Monitoring, 4012 for Access
Control and 3886 for Parts Monitoring. The devices and resources often have a value of 0
residing at the edge of the network, not providing connection between any two components.

7.1 Analysis and Replication: AME Case Study 103

o%e
o - a o
a o o nﬂa o o -
— -] e -}
PV o = O & ° UQ
" 9 & o o o
o - o o S— =
S— o o - & o
el e | S— — e o
e Q —— — O @ ——— N P
n =] e =
u_ rav/4 ¢ e— ° n—u ° - uv °
o .f ° @ ®e ® °
9— \ o o © 0O o O
- —
Q o - 4 a n'-"
—— o o
s — e o5 (b
9 o
8o S o . 0o 0%0
o O 0':'= o
°
(a) o
B)
v
S °
09 7g ® %% ° °a °
o
o o0 @ %=, °-—°°° - —-—
—_——— - o T o
o o = =09 o ¢ a po—W o ®
o d z=° Commn o — —-—
- o o0
o —F o ol o °v ° . o
O oo o o s ——— O ©
L] =
o o oé—o y. -
Se o o o oo - 0 g0
o > o a -] =
nng':" :—° [o
o g 2/ % ey 9 9 —" o "o
LA ¢ o ¢e o p—— 2 M
¢ - o s o e g L=
=] o o
o — — o .1 o= 0 o o e
o s o g
5 o 0 omsu —_—
un o @ O o= Y om ° =0
= o -_ T ° e ©
o o [— L]
a — o o ommm L~) ° @
o o o X o °
o o = 00 L
a @ o == e
L
¢ -
] °
c) °
¢ S0 @

Fig. 7.5 DBScan Clustering Results

Based on the betweenness data as well as the graph degree distribution and structure
of the system it can be shown that there are some similarities with existing models. The
Access Control and Energy Monitoring Systems have similar structures and the data in fig.
7.6 and 7.7 show that they have similar properties in structure to hierarchical and fractal
networks with certain outliers and density variations. A closer look at these systems shows
that their distribution and betweennness, especially that of the Access Control are like a
Barabdsi-Albert model with an initial degree, my = 1. The Parts Monitoring system has
a different architecture with similar properties to a Random Graph when looking at the
applications connections and the lack of clustering, as well as the outliers in fig 7.5. and fig
7.6. For the Combined system, the plotted data as well as its structure suggest that it has
similar attributes to the Random Network that models the World Wide Web (WWW), having
clusters form and a varied type of connections.

104 Evaluation and Analysis

Access and Security |-

Parts Monitoring :

Energy Monitoring K

= Compound System :
5 - - :
o :
o :
) :
o N
<] :
=z :
g 1 ;
K :
€ :
0 2 4 6 8 10 12 14 16 18

Edge Count

Fig. 7.6 Graph Degree Distribution of Systems

Access and Security

Parts Monitoring
08 Energy Monitoring
e Compound System
=]
S os
[}
°
<]
z
Loa
5
&
0.2 :
0 5= — 3
0 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9 1

Centrality Value

Fig. 7.7 Graph Betweenness Distribution of Systems

7.1.5 Replication Analysis

When looking at the parameters used to generate use cases, certain properties of interest are
considered. The increased adoption of connection locality and clustering can be seen in fig
7.8. Part (a) shows a completely random system with just the node numbers and average
connection data being used. Part (b) adds connections types, distribution and locality, while
part (c) adds the remaining factor of clustering.

The data in Fig. 7.8 shows that as more parameters are adopted the systems resembles
those presented in fig. 7.5. The system in (b) is similar to the Parts Monitoring use-case with
the exception that devices are more interconnected due to the lack of locality data. System
(c) contain all considered parameters and is like the Combined use-case and the Energy

7.2 Model Validation 105

((

Fig. 7.8 Replicated Systems

Monitoring one. When consider even more realistic systems, the scaled generations based
on Random Networks or Barabdasi-Albert models should be considered. These can form the

basis of how these will scale up.

7.2 Model Validation

For these tests a set of applications are proposed that have different loads and message
rates. These are tested individually on the gateways. They are deployed in groups and
migrated to verify that the presented application model stands and that the estimations for
Gateway Load and Application Delay are correct. Based on these the accuracy of the model
is measured.After the model is verified and the resulting parameters tested, two sets of
optimisation tests are performed.

The first set consists of testing the optimisation of a system of four gateways having
a varying set of applications deployed on them. The run-time parameters are measured,

validating them to the model, then the optimisation algorithms are run, deploying the results

106 Evaluation and Analysis

and validating them on the physical system. Based on these tests two approaches are evaluated
on a small-scale deployment.

In the second set, the scalability of the methods and optimisation algorithms are tested by
generating a random set of gateways with a set of available cloud VMs with random latencies
between them and a random set of deployed applications and look at how well each method
performs.

The main assessment criteria for the model are the precision of the Load and Delay
estimation on the system. The optimisation methods are assessed by looking at the decrease
in application delays and the reduction of constraint violations that are adjusted to the size of
the cluster by looking at how much the total delay drops on average for each gateway as well

as how many applications can fulfil their requirements on average per gateway.

7.2.1 Single Deployment Validation

The initial models error is known from the fitting tests which resulted in 7.34%. A more
extensive test is performed and the results evaluated when deploying to four RPil type
gateway and an equivalent cloud GW. There are 8 applications with varying loads of 0.465,
1.45, 4.265 and 9.915 and varying message rates of 1, 4 and 20.

9r Il Delay Estimation Error
8 I CPU Use Estimation Error
7
<6
55
5 4
3
2
1
% 1 2 3 4 5 6 7 8 9 10 11 12
App Number

Fig. 7.9 Single Deployments Results

This test consists of deploying applications on a free gateway, measuring the app and the
gateways run-time parameters and comparing them to the estimations that the application
model made. The results of these tests can be seen in Fig. 7.9.The Idle Load Lﬂ-dle in (5.5) for
these tests 1s 5.64. The estimations of a single app deployment had an average error for the
Total Load of 3.30% and 4.99% for the Estimated Delay, with a maximum error for the load
of 5.68% and 8.35% for the delay. These maximum values were achieved at the edges of
the linearisation by two apps. For further testing the remainder of 9 apps are considered that
lacked the maximums.

7.2 Model Validation 107

7.2.2 Bundled Deployment Validation

Bundled deployment testing considers the applications from the first test and deploys 10 sets
of them on the gateway and verifies how accurate the model is in determining the application
delay and the total processor use. For these tests, applications have the same Unit Load as in
5.7. The accuracies of these deployments can be seen in Fig. 7.10.

10+ I Delay Estimation
[CPU Use Estimation

12,3 158 888 456 269 6,77 3,10,11 3,47
App Bundle

Fig. 7.10 Bundled Deployments Results

From these tests, the Gateway Load estimation error when deploying a set of applications
1s 3.92% while the maximum value is 8.6% which was found for the deployments with
applications of low message rates. The Delay estimation error was found to have a mean of
5.47% and a worst result of 9.04% from the same set of applications.

7.2.3 Migration Deployment Validation

I Total Delay Change
[CPU Change

da

[3],4,7

Error (%)

2,[61,9 2,7[7] 3,[10],11
App Bundle

Fig. 7.11 Migration Deployments Results

108 Evaluation and Analysis

For the final tests, application are migrated while measuring the changes in the original
host of the application and considering the delay time of the application and how accurate
this estimation was. The results can be seen in Fig. 7.11.

The resulting errors measure the estimation error correlated to the total value of the delay.
In these cases, the average estimation error of the CPU of 2.26% with a maximum of 4.91
was found. The delay estimations had an average error in accuracy of 1.75% with a peak of
4.4%. This is partially due to the small size of the errors compared to the total delay as well
as using monitored parameters to estimate the results of the migration.

7.3 Physical System Deployment Optimisation

700+ N 100
I Gateway Load
5 [IGateway Delay 80
g 500 — T 7 9;‘;
= 8 L 60
3 6 g

300+

5 3
2 20
10CL .
4 1 - mm |

Gateway1 Gateway2 Gateway3 Gateway4 CIéudGateway

Fig. 7.12 Initial Deployment

For these tests the Fog of Things Platform has 4 gateways and a Virtual Cloud Gateway.
The gateways have a delay between them of an average of 19.53ms while the delay between
the cloud gateway is set to an average of 42ms. The initial state of the cloud is empty only
having application migrated to it after optimisation if needed. A set of initial configurations
are generated, deployed and monitored on the gateway. After this, the information is fed into
the optimisation algorithms that come up with the best solution within the parameters and
proposed functions.

The results are then deployed on the physical cluster and the actual values are examined.
The initial Delays and CPU usage of the gateway can be seen in Fig 7.12. The total delay
of the system is 1881.80ms while the average Load variation is 21.67% with a System
Reliability of 66.53% and there are 2 applications that do not meet their constraints.

For this initial phase, the differences in results from the given fitness functions are of the
highest interest. For this set, the best results from the Hungarian, GA and Random methods is
used. The results can be seen in fig. 7.15 for Reliability Optimisation and fig. 7.13 for Delay

7.3 Physical System Deployment Optimisation 109

800 I Gateway Load |] 100
| [Gateway Delay

600} 180 .
m &
E 5 2
= 3 160 &
) o]
9] a
[a)] (W]

7
4001 i
| 140
200
H ’ 5 2 120
7 n . 5
0 4 4 1

Gateway1 Gateway2 Gateway3 Gateway4 CloudGateway

Fig. 7.13 Delay Optimisation

800 1100
L I Gateway Load
[Gateway Delay 80

600 | 17
a 2
E - leo &
% 7 60 &
34001 5 2
[a) V]

140

i e
200 76| 5 120

L | 4 L
= Il e

Gatewayl Gateway2 Gateway3 Gateway4 CloudGateway

Fig. 7.14 Constraint Delay Optimisation

Optimisation and fig. 7.14 Constraint and Delay Optimisation. Here the number represents
the application ID.

From these tests, the Reliability Optimisation method managed to reduce the load varia-
tion to 2.07% and had the maximum reliability of 73.56%. This did not improve constraint
violations and it actually increased the delays to 2038ms due to unnecessary migration. The
Delay Optimisation achieved a minimum total delay of 1854ms with 1 constraint violation
while the Constraint and Delay Optimisation had a higher total delay of 1974.1 ms but
managed to have O constraint violations. Both the Delay Optimisation and Constraint and
Delay Optimisation methods improved the Reliability to 72.35% and 71.43% which is an
improvement to the initial deployment but falls short of the Reliability Optimisation results.

These tests show that some methods that are tailored to solve single parameter problems
affect other parameters as well, in some cases improving them. Due to the exponential
nature of the reliability function, the best overall reliability was achieved by balancing out

the applications on the system. This solution had the consequence of creating the worst

110 Evaluation and Analysis

overall delay on the system. These physical deployments tests server as proof of the need for

multi-parameter methods but also show the interconnected nature of these parameters.

800 7 1100
L I Gateway Load
[Gateway Delay 80

600 | 175
= [leo 2
S — 3
<400 2
(&) v

40

|
200 |3 n
i 720
L 5
1 6
0 4

Gateway1 Gateway2 Gateway3 Gateway4 CloudGateway

Fig. 7.15 Reliability Optimisation Results

7.4 Evaluation Use Cases

The evaluation use cases are deployment scenarios that are designed to evaluate the perfor-
mance of the algorithms in increasingly difficult conditions. The difficulty is increased in
two directions, the first direction is the validation, where the deployed applications require
more parameters to in line so their deployment is acceptable. The second direction is the
complexity of the utility function. In the first case a single component utility function is
examined while later on varying weights and constraints based utility is considered as well.

Three scenarios are considered. The simplest one, with the most basic requirements is
the delay optimisation which only looks at reducing the delays on the system. The Weighted
Multi-component utility scenario increases the complexity of the optimisation tasks by adding
multiple parameters that need to be improved as well as adding soft constraints to the system.
The final scenario adds capabilities and requirements matching to the equation which makes
validation more difficult.

The scaling and expansion functions of these scenarios, when generating test cases are
based on the parameters found in Table. 7.1 and 7.2 that generates fog systems that resemble

the one presented in Fig. 7.5 (d).

7.4.1 Delay Optimisation scenario

The delay optimisation scenario is the most basic, as it considers no soft or hard constraints

and look at improving only a single parameter, the system delay. The system delay is defined

7.4 Evaluation Use Cases 111

as in Eq. 5.8 and the utility function can be seen in Eq. 7.9 as the sum of all the application

delays on Fog F.
n
Utilhyy =D" =Y. Df (7.9)
i=0
The weights for the delay W,”*/*” is 1.0 for all the applications. Validating a deployment in

this scenario is simply the case of going through each gateway and checking if their maximum
load value has exceeded the maximum allowed, which is 99% of its load capability.

7.4.2 Weighted Multi-Component Utility scenario

The weighted multi-component Utility scenario proposes a multi-property utility that is
designed to create a more difficult optimisation problem. In this scenario the total utility of
the system and an individual can be seen in Eq. 7.10 .

Utiliii—comp = D" +RF +Ct" =

n

Df +RF +cif (7.10)
i=0

Here, DY is calculated as in Eq. 5.18, Rl is done as in Eq. 5.20 and Ct/ is computed as

presented in Eq. 5.22. When considering this scenarios the weightings of the applications

WiX are modified as well so certain applications are more interested in one parameter over

another having Wl.CO”“ raini_Violations a¢ 1 () when they are present and at 0.0 when not and

having WiDel“y and WiReliabimy in the range {0.0,0.33,0.66,1.0}. In these tests, there is a 0.2
chance that an application has soft constraints.

The soft constraints for the application reliability and delay are generated by deploying
the application to a theoretical gateway that contains the average system load, adding 10%
and considering its delay and reliability in that case as the reference. The soft constraints
don’t affect the validity of a deployment as their impact is solely on the total utility. This
allows the use of the same method for validation as for the Delay optimisation scenario
above.

7.4.3 Capability Constraint and Utility scenario

The Capability constraint and Utility scenario builds on the previous case where the same
utility from Eq. 7.10 is used and the same method for generating new test cases. The only
difference between this and the previous scenario is the addition of gateway capabilities

Cap?w and application requirements Cap‘?. These are considered hard constraints, which

112 Evaluation and Analysis

means if they are not satisfied, the resulting deployment solution is not valid. This further
increases the difficulty of the optimisation problem that is being tested.

In this setup 7 possible Capabilities are considered, out of which each gateway contains
at least 4 different ones and each application requires only one Capability from the gateway.
This creates a more difficult validation scenario than for the previous scenarios where the

gateway load limit was the only restrictive factor.

7.5 Testing Parameter Selection

When considering the testing parameters for the validation section, these parameters can
be put into two categories. The first category of parameters influences the results of the
optimisation methods in a limited way but doesn’t determine whether these will terminate.
The values for these can be seen in Table 7.3. and are considered constant during the testing
and are tuned to the existing parameters based on the literature available for the scenario
generations and based on the breadth of tests that were performed during the development
for the method parameters.

The test were deployed and run on a Spark Cluster deployed on five workers that have
the configuration and processing capability of VM1 from Table. 5.1. Each test is allocated
2GB of Ram for the worker and 1GB of ram for the Driver and 1 CPU each.

Besides these fixed parameters there are those that can greatly influence the results of the
optimisation methods. The tuning of these values changes with the scenario selection as well
as with deployment size. The tuning of the eps parameter is automatically done by one of
the methods as it’s tuning values differ too much between scenarios and chosen weights and

would not be practical.

7.5.1 GA Parameter Selection

When considering the dominant parameter selection for the GA, other than the parameters
that are fixed from the previous section, the generation size and the stopping condition need
to be set which are considered by (Boyabatli and Sabuncuoglu 2004) to require specialist
knowledge and there is no clear way exists of finding these.

For the generation sizes, a number of tests are run in Fig. 7.16. for the Delay Scenario, in
Fig. 7.17. for the Multi-Parameter scenario and in Fig. 7.18. for the Capability Scenario.
The resulting scaling formula for these methods can be seen if Eq. 7.11.

The graphs were generation for each scenario in the same way with the Fog Size being

the only varying parameter as the Capability Scenario is too difficult for the GA to solve at

7.5 Testing Parameter Selection 113

Table 7.3 Fixed Method Parameters

Parameter Used In Value/
Range
Inside Cluster Latency 8.97-30.89
Inside Cloud latency 2.37-6.89
Edge Cloud Latency 37.37-87.89
Cloud Edge Gw Ratio 0.1
Max App Load 30%
Max Fog Load Scenario Generation 00%
Constraint Allocation Rate 0.1
Constraint Improvement 8%
Edge Gateway Capacity 1.0-1.4
Edge Gateway Speedup 1.0-1.4
Cloud Gateway Capacity 1.8-2.5
Cloud Gateway Speedup 2.8-4.3
Random Population 0.4
Elitism Population 0.2
Crossover Population Genetic Algorithms 0.2
Mutation Population 0.2
Mutation Chance 0.1
Eps Distance 1
minPts Clustering
Max Gw Division 2
Gw Share Threshold Resource 0.3
Cluster Allocation Cutoff Allocation 0.8
Min Allocation Req 1.2
Max Fail Count 3
Max Iteration Count 10
App Consideration Limit .) 0.2
Gw Consideration Limit Ite?tllve lW ?lghts 0.05
Better Solution Limit aleufation 4%
Penalty Value 0.2
Consideration Change Rate 10%
Sample Relative Size 0.1
Min Sample Size Sampling 10
Size Increase Multiplier Weights 2
Size Decrease Multiplier Initialisation 0.9
Max Fail Count 10

the sises the other scenarios were tested. The legends of the figures show the Fog Sizes that
were used, while the Polyfit represents the dotted line that shows how the size needs to be

adjusted as the system is scaled.

114 Evaluation and Analysis

10 Delay Scenario
18 170
2r 160
(0]
2 150
=15 2
3 = (00
@ g
= 1r 130 W
<
120
05 110
70 80

10 20 30 40 50 60
Generation Size

Fig. 7.16 Generation Size Variation Impact - Delay

10 Multi Component Scenario 20
18
2.5 H
22
o ol 42 |
£ 50 R
- 58 N
Q1.5 {= = Polyfit 140 @
= (@)}
3 | an O
= 30 L
g 1
120
05 110

10 20 30 40 50 60 70 80
Generation Size

Fig. 7.17 Generation Size Variation Impact - Multi-Parameter

The values for the Adjusted time are calculated by first generating a Fog Deployment
and using a GA with a generation size of 200 and an iteration size of 5000 to find a reference
utility function. Then the generation size is then varied within the shown parameters and
repeated 5 times while the average time to reach the reference utility is recorded. When
plotting these values are adjusted so they don’t represent time but rather their deviation from
the mean time for that instance.

The PolyFit values and equations are derived by multiplying the adjusted time with the
respective generation size ad dividing it by the sampling rate. If these values are considered
for each Fog Size and then a linearisation method is used, they result in Eq. 7.11 where the

Fyi,. represents the fog Size.

7.5 Testing Parameter Selection 115

Capability Scenario

—38
25+ {30
[0) L 125
£ 2 o
= N
B 15¢ {20 @
2 £
© i
< 1t 15
05Ff 110

10 20 30 40 50 60 70 80
Generation Size

Fig. 7.18 Generation Size Variation Impact - Capability

Delay Scenario : 47.69 + 0.079F5;,,
Multi — Parameter Scenario : 40.31 4 0.22Fg;., (7.11)
Capability Scenario : 36.43 +0.76 x Fyj,,

When considering the stopping condition for the GA algorithms used in the validation
a simple maxlteration count would not allow the system to find the best solutions, so a
different method is proposed where the GA terminates if it has been stagnant for a number
of iterations with no improved utility found.For this stagnation value the double of each

scenarios largest stagnation point is considered.

Delay Scenario Delay Scenario Stop Condition Trend
1r . /
= 800 | S
0.998 - /
5 0.996 | @ 700 f ’
= L 2
< 0.994 10 E’ 600 /
= | 21 e /
o 0.992 32 S /
o ® L
| 43 .2 500 Vs
E’ 0.99 - ;D;_ ,
5 0.988 f 65 [I /
76 & 400 y;
0.986 r % Gap Start 7
® GapEnd L
0.984 300/
0 1000 2000 3000 4000 5000 20 40 60
Iteration Count Fog Size

Fig. 7.19 Stop Condition - Delay

116

Evaluation and Analysis

Multi Scenario

Multi Scenario Stop Condition Trend

1k 712 ’
‘
710 /7
0.98 - 4
9 2 708 ’
$0.96 £ /
£ © 706 ’
X094t g %
a 3 704 ’
> L a 4
£ 0.92 % 702 ’
=}
O} /
09 76 700 /
% Gap Start 4
0.88 - % Gap End 698 r »
Il Il Il Il Il Il Il Il Il Il L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 20 40 60
Iteration Count Fog Size
Fig. 7.20 Stop Condition - Multi-Parameter
Capability Scenario Capability Scenario Stop Condition Trend
4500 ’
1+ /
rr 1| = '
ool 3500 /I
— (2}
g o) ’
> % 3000 ’
Eo8p 8 2500 /
207 2 2000 }
= 5 g /
5 ° & 1500 ’
0.6 17 1000 !
21 !
% Gap Start 1
05} * GapEnd 500 Vi
I I I I I I I I I I I 0 1. i i
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 10 20 30
Iteration Count Fog Size

Fig. 7.21 Stop Condition - Capability

For these stopping conditions, a number of tests are run in Fig. 7.19. for the Delay
Scenario, in Fig. 7.20. for the Multi-Parameter scenario and in Fig. 7.21. for the Capability

Scenario. The resulting scaling formula for these methods can be seen if Eq. 7.12.

Delay Scenario : 176.88 4+ 11.168F%;,,
Multi — Parameter Scenario : 694.57 4 0.2922Fy;,, (7.12)

Capability Scenario : 178.45 * Fyj,

The figures were generated in the same way, with only the Capability Scenario receiving
lower thresholds for the Fog Size as in the previous tests. The legends show the size of the
tested fog environments while the figures show how they reached the best results and what

7.5 Testing Parameter Selection 117

the utility values were at each iteration. The GapStart and GapEnd points show where the
major gaps were in the testing. The adjacent figure shows the trend in the gap sizes with the
increase in scale. The iteration counts were fixed to 5000 for these scenarios.

The Utility proximity values are calculated by comparing each utility to the best one the
method found. The Gap Sizes were calculated by finding the largest stagnation periods for
each iteration excluding the one leading to the 5000-th iteration and linearising these for each
scenario resulting in the equations in Eq. 7.12. The equation for the Capability Scenario was
adjusted as to start from 0 and have a slope a of 178.45 as from the linearisation the starting
point or value of b was found to be —1658.3 which would result in small scales having a

stopping condition that is negative.

7.5.2 Clustering Parameter Selection

Selecting the right clustering parameters can determine the quality of a test and also its
run-time. Higher Cluster sizes mean that the search-space is larger which should allow
for better minimum points to be found but can also lead to the methods getting stuck or
not being able to meaningfully cover the space. A lower cluster size while improving the
time-efficiency of the algorithm might result in situations where the search-space is so small
there is no valid solution or there is little to no room for improvement.

The attempt to get a reference guide for these sizes to be able to rule these parameters
out when evaluating the methods can be seen in Fig 7.22. where the three scenarios can be
seen in one graph with they approximated quadratic functions.

The test was conducted by generating a Fog environment of a certain size and scenario
and running a GA Optimisation on this using the stopping conditions specified in Eq. 7.12.
If there was no valid deployment found a new fog was generated and the test re-run a
maximum of 5 times after which a value of 0.0 improvement for the test is noted. The
utility improvement is calculated by getting the best utility of the first randomly generated
population and comparing that to the best of the last generation. If there is no improvement a
value of 0.0 is noted as in the previous case.

Based on these tests it can be shown that increasing the difficulty of the problem reduces
the range of Fog Sizes where the GA works well. The Multi-Component scenario has a
steeper slope that the Delay scenario and the Capability Scenario has the steepest slope and
smallest Fog Size Range.

Setting the minPts value for the Clustering doesn’t directly results in cluster sizes but
from the conducted tests, the size of the resulting clusters is also determined by the confidence
factor of the parameters but a reference value of 0.25 of the desired size can be considered
as this allows the initial clusters which are based on less reliable weights to be found and

118 Evaluation and Analysis

0.25
0.2
S
= 015
()
=
2
o 01r¢f
Q
E
Z 0.05
5
= .
[ok Delay Scenario
Q Multi Scenario
)} Capability Scenario
= == :Delay 2-nd Order Approx
-0.05 = = Multi 2-nd Order Approx
Capab 2-nd Order Approx
_01 1 1 1 1 1 1 1]
0 10 20 30 40 50 60 70 80

Fog Size

Fig. 7.22 The effect of the Fog Size on Outcomes

analysed fast and results in the upcoming clusters that are based on better weights to get
more time and have larger sizes.Based on these, the minPts sizes are defined as in Table. 7.4

Table 7.4 minPts parameter Selection

Delay Scenario Multi-Parameter Scenario Capability Scenario
Desired Cls Size 58 55 17
minPts 18 15 5

7.6 Performance Analysis

The scaling tests are designed to show how the proposed methods work in small, middle
and large scale deployment scenarios. The proposed Sampling and Initial Weights training
methods are compared to the Modified GA method, the network analysis clustering method

(distance clustering) and a random clustering and allocation method to verify how they

7.6 Performance Analysis 119

achieve results and in what time. The results are plotted in logarithmic time scale and the
comparative utility is the ratio of the methods result compared to the best result of the system.
If an attempt fails, the method is re-run 3 times to ensure that the failure is a characteristic of
the system and not a marginal case, considering that if out of three attempts did not succeed
the random starting points or direction is not to blame.

7.6.1 Small Scale Tests

Delay Scenario and Size of 20

1.005 +
1F A
0.995 -
;\3 0.99
E‘ 0.985 -
=
o 098
=
© L
5 0.975
£
s 0.97r
O
0.965 - Initial Weights Based
Random Clust and Alloc
0.96 Connection Clust and Alloc
Sampling Based Method
0.955 | Genetic Algorithm
|
10° 102
Time (s)

Fig. 7.23 Small scale Delay Scenario Performance test

The small scale tests are shown in Fig. 7.23 for the Delay Scenario, Fig. 7.24 for the
Multi-Parameter scenario and Fig. 7.25 for the Capability Scenario. The small scale test
for the Capability scenario has fewer apps as the increased difficulty of this scenario makes
differences visible at smaller scales. In these tests if the results of a test are at 0 or are not
visible, it means that there was not valid solution. This is true for the large test set as well.

From the results of the tests, it is obvious that as the difficulty of the scenarios increases
the effectiveness of the simple methods and their resulting utility is diminished. In these tests
the scale of deployment is low enough, so the methods find similar or the same best results.
In the case of the Capability scenario, they find the same results. In Fig. 7.25 the methods
are tweaked to find clusters larger than the size of the Fog deployment so all methods find
the same cluster which is in fact the generated fog environment. The GA is the first to finish

as it does not need to attempt clustering or resource allocation.

120 Evaluation and Analysis

Multi Parameter Scenario and Size of 20

1L A
7~ A
0.98 | '
096 -
2
2094
E
Qo092
©
8 09
1S
3
0.88 -
Initial Weights Based
0.86 - Random Clust and Alloc
’ Connection Clust and Alloc
Sampling Based Method
0.84 - f Genetic Algorithm
1 1
10 102
Time (s)

Fig. 7.24 Small scale Multi-Parameter Scenario Performance test

Capability Scenario and Size of 10

1.02 +
1b A\

_.098

2

=

= 0.96 -

5

o

=

*@ 0.94

I

Q

§ 002}

(&]
Initial Weights Based

09 r Random Clust and Alloc
Connection Clust and Alloc
Sampling Based Method
0.88 Genetic Algorithm
1 1
10° 10°
Time (s)

Fig. 7.25 Small scale Capability Scenario Performance test

From the execution times, the benefits of the simple methods are visible as they terminate
much faster than the others. At these scales the Global GA finds solutions a lot earlier than
the proposed methods, and the quality of these solutions at the same time is similar or equal.

Another element that can be seen in these tests is the reduced iteration count for the
two proposed methods, which can be attributed to the reduced size and lack of room for
improvement, as it can be seen in the GA scaling tests from Fig. 7.22.

7.6 Performance Analysis

121

7.6.2 Medium Scale Tests

0.998 -

. 0.996

0.994 - T

0.992 |-

0.988 -

Comparative utility (%
o
©
©

0.986

0.984 -

0.982 -

|

Delay Scenario and Size of 80

Initial Weights Based
Random Clust and Alloc
Connection Clust and Alloc
Sampling Based Method
Genetic Algorithm

|

102

10°
Time (s)

Fig. 7.26 Medium scale Delay Scenario Performance test

Multi

0.98 [

0.96 [

Comparative utility (%)

Parameter Scenario and Size of 80

Initial Weights Based
Random Clust and Alloc
Connection Clust and Alloc
Sampling Based Method
Genetic Algorithm

1 1

Fig. 7.27 Medium scale Multi-Parameter Scenario Performance test

102 10°
Time (s)

The medium scale tests shown in Fig. 7.26 for the Delay Scenario, Fig. 7.27 for the

Multi-Parameter scenario and Fig. 7.28 for the Capability Scenario. These tests are designed

to show how the methods perform in an environment that is more suited to their purpose.

122 Evaluation and Analysis

Capability Scenario and Size of 20

Initial Weights Based
1r Random Clust and Alloc i

Connection Clust and Alloc
Sampling Based Method
Genetic Algorithm

Q)

< 0.95 -

=

5

o

=

S 09F

I3

Q

1S

o

(&]

0.85 -
0.8 & 1/ Il
10° 102

Time (s)

Fig. 7.28 Medium scale Capability Scenario Performance test

Given enough room for improvement and small enough scale the GA method outperforms
the other methods in the first two types in Fig. 7.26,7.27, but fails to find a solution in Fig.
7.28. Here, the proposed methods outperform the simple ones, and come close to the GA.
This supports the need for larger clusters where enough room for improvement is given. In
this case, the proposed methods run more iterations as in the previous tests, but still do not
come close to the given limit of 10.

When looking at the execution time of the first two tests, it can be said that the proposed
methods find solution having a worse utility than the GA as at this scale the Global GA
method is close to it’s ideal running conditions.

7.6.3 Large Scale Tests

The large scale tests shown in Fig. 7.29 for the Delay Scenario, Fig. 7.30 for the Multi-
Parameter scenario and Fig. 7.31 for the Capability Scenario. These tests are designed to
show how the methods perform in a large scale environment for which they were designed.

In these tests, the benefits of the proposed methods become more prominent as they
surpass the GA method in both execution time for a certain Utility and the best utility as well
in the Delay scenario. For the Multi-Parameter Scenario, the Initial weights based method
performs worse than the GA which shows the importance of finding good starting weights
for the system. The Capability scenario shows that at large scales most methods failed to
find a solution with only the sampling method being successful.

7.6 Performance Analysis 123

Delay Scenario and Size of 320

1.005
1F
0.995 -
g
> 099 -
E
o 0.985
=
©
< 0.98 -
Q
§
O 0.975
Initial Weights Based
0.97 1 Random Clust and Alloc
Connection Clust and Alloc
0.965 | Sampling Based Method
Genetic Algorithm
1 1

10° 10*
Time (s)

Fig. 7.29 Large scale Delay Scenario Performance test

Multi Parameter Scenario and Size of 320

Initial Weights Based
1 Random Clust and Alloc
Connection Clust and Alloc
Sampling Based Method
0.99 Genetic Algorithm
9
<098
=
5
o 097 F
=
©
8 0.96
1S
o
O 095
0.94
0.93
1
108
Time (s)

Fig. 7.30 Large scale Multi-Parameter Scenario Performance test

The Connection Clustering and allocation method fails all scenarios as the clusters it
finds and their allocations over-fragment the resources which makes finding solutions more
difficult. The random Clustering and Allocation works well, as it is done in a balanced way
with even and test based optimal cluster sizes and equal gateway distribution. This is a very

crude and simple allocation method but as it can be seen from the tests it provides a decent

124 Evaluation and Analysis

Capability Scenario and Size of 60

Initial Weights Based
09 Random Clust and Alloc
Connection Clust and Alloc
0.8k Sampling Based Method

’ Genetic Algorithm

o ©
(o2} ~
T T

Comparative utility (%)
o
[6;]

0.4t
03+
02t
0.1 F
(s A — A
1 1 1 1
1072 10° 102 10%
Time (s)

Fig. 7.31 Large scale Capability Scenario Performance test

solution in the first two scenarios comparable to the global GA method and in a lot faster
time.

7.6.4 Conclusions

When evaluating the performance tests, the scalability analysis of the GA method from Fig.
7.22 need to be considered as well. In this test,the GA has its best performance at 58 for the
Delay, 55 for the Multi-Parameter and at 16 for the Capability Scenario. What this means for
these tests is that by breaking up a Fog of Size 80 or under results in a situation where there
is not enough room for the GA to get good results inside the clusters, which explains why
the global version works best. Reaching the higher scales improves the situation, but there
are still only an average of 7 resulting clusters, even so, the advantages of these methods are
present, as the sampling method outperforms the others and GA in both execution time and
best results attained.

7.7 Scalability Analysis

The scalability tests are designed to show an overview of how the methods perform based
on the scale of the system, providing less detail than the performance tests on how a certain
solution is reached but giving an overview of the results. This set of tests is run by generating

5 Fog deployments of a certain size and scenario and then running all the methods on this

7.7 Scalability Analysis 125

test to verify how well they perform. If a test fails its utility is considered as 0, and if all
tests fail a new Fog is generated. As the execution time of the system increases exponentially
with the size, this is plotted in logarithmic scale while the utility improvements are plotted as
opposed to the best results of the system.

7.7.1 Delay Scenario

Execution Time Scaling for Delay Scenario

10°
Genetic Algorithm
Connection Clust and Alloc
Sampling Based Method
Initial Weights Based
Random Clust and Alloc
104 £]

Execution Time (s)
=
w

101 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

Fog Size (App Count)

Fig. 7.32 Delay Scenario Execution-Time Scalability test

The delay scenario is designed as a reference situation, as it is the most common objective
of most analysed optimisation attempt. The execution time scaling for this can be seen in Fig.
7.32 and the utility scaling can be seen in Fig. 7.33.

The time scaling test shows that the simple random and distance based methods are by far
the fastest of the presented ones, and that their slopes are smaller as well. When considering
the more time consuming methods it can be seen that with deployment sizes below 120,
the GA method performs faster than the proposed methods. For sizes above this, a clear
distancing between the two can be seen which would be accelerated at higher scales.

The Utility scaling for this scenario shows how at lower scales, under 200 most methods
have comparable results with little differences while at higher scales the problem of finding
a valid deployment comes into play. The beginning of GA limitations can be seen here, as
it fails to find valid solutions for any of the tests above the 320 apps mark. It is also worth

noting that the Random and Initial weights methods perform in similar fashion while the

126 Evaluation and Analysis

Utility Scaling for Delay Scenario

1k]
0.99]
S
> 0.98 - g
5
2097 |
©
I}
aQ
€ 0.96 1
(&] - -
Genetic Algorithm
Connection Clust and Alloc
0.95 Sampling Based Method 4
Initial Weights Based
Random Clust and Alloc
0.94 \ g
Il I Il Il Il Il Il Il Il

0 50 100 150 200 250 300 350 400 450 500
Fog Size (App Count)

Fig. 7.33 Delay Scenario Utility Scalability test

sampling methods is consistently the best, showing the importance of finding good starting

weights and the power of clustering as well.

7.7.2 Multi-Parameter Scenario

10 Execution Time Scaling for Multi-Parameter Scenario
T T T T T T T T T
Genetic Algorithm
Connection Clust and Alloc
Sampling Based Method
Initial Weights Based
Random Clust and Alloc
104 £]

Execution Time (s)
=
w

10!
0 50 100 150 200 250 300 350 400 450 500

Fog Size (App Count)

Fig. 7.34 Multi-Parameter Scenario Execution-Time Scalability test

7.7 Scalability Analysis 127

Utility Scaling for Multi-Parameter Scenario

o o ©
© © ©
X o ® =
T T
|

o

©

N
T

Comparative Utility (%)
o
©

0.88 [.
086 Genetic Algorithm
Connection Clust and Alloc [~
0.84 - Sampling Based Method 7
Initial Weights Based
0.82 - Random Clust and Alloc :

Il Il Il Il Il Il Il Il Il
0 50 100 150 200 250 300 350 400 450
Fog Size (App Count)

Fig. 7.35 Multi-Parameter Scenario Utility Scalability test

The multi-parameter scenario is designed to be a challenge for the clustering methods, as
it has varying weights and changing soft constraints for apps which makes it difficult for the
methods to find a valid direction for clustering or resource allocation. The execution time
scaling for this can be seen in Fig. 7.34 and the utility scaling can be seen in Fig. 7.35.

The time scaling tests show a similar trend as in the previous subsection, with small
divergences and a larger gap between the GA and the other methods as well as a steeper
incline and more time for all the methods, which shows that the more difficult the optimisation
problem is the more resources need to be allocated to solving it, even if the same methods
are used.

Form the utility tests, a number of conclusions can be drawn. One of the conclusion
supports the previous tests where the GA outperforms the clustering methods on lower scales
where it is able to find better solution, but at sizes larger than 300, the clustering methods get
better results.

7.7.3 Capability Scenario

The capability scenario is designed to test the limits of all the methods as could be seen
from the performance tests. It is designed to provide a scenario where usually first-fit style
methods are used. The execution time scaling for this can be seen in Fig. 7.36 and the utility
scaling can be seen in Fig. 7.37.

128 Evaluation and Analysis

Execution Time Scaling for Capability Scenario

5 Genetic Algorithm
10° Connection Clust and Alloc E
Sampling Based Method
Initial Weights Based
Random Clust and Alloc
10% £ E
@
[0}
o2l 3
< 10
o
=]
o
5}
i
100 ¢ E
102 3
1 1 1 1 1 L L L I

20 40 60 80 100 120 140 160 180
Fog Size (App Count)

Fig. 7.36 Capability Scenario Execution-Time Scalability test

Utility Scaling for Capability Scenario

o
©
T

o
oo
T

e
u
T

0.6 -

Comparative Utility (%)
o
(6]

03]
Genetic Algorithm
Connection Clust and Alloc
02r Sampling Based Method 1
Initial Weights Based
0.1 Random Clust and Alloc 1
0 | | | | | |

0 20 40 60 80 100 120 140 160 180
Fog Size (App Count)

Fig. 7.37 Capability Scenario Utility Scalability test

The time scaling tests for the capability scenario show the intensification of the trend that
could be seen in the previous tests where the GA method had increased its execution time
with the increase of the deployment scenarios’ difficulty. This can also be seen here with the
sampling and initial weights methods performing similarly while the GA method reaching
execution times that were 10 times higher. This is mostly due to the difficulty of finding valid

solutions which is the main characteristic of this scenario.

7.8 Component Evaluation 129

From the scaling tests the results of the performance evaluation in Fig. 7.31 are confirmed
as only the two weights based clustering methods are able to find solutions with the initial
weights based methods overtaking the sampling one. This can be explained with the over-
confidence in certain weights caused by the initial sampling, which is smaller cases allows
for faster results but in larger scenarios may cause a fast convergence. The large differences

between results also support the difficulty of finding even one valid solution.

7.7.4 Conclusions

When considering the execution time, based on the scalability that it can be concluded that
the proposed methods provide a way of reducing the execution time of the GA method and
reduce the slope at which it increases with scale. It is worth noting that this differences can
mostly be observed with Fog sizes larger than 150 applications. This difference would be
more significant if the Local allocation GA would be distributed so the different clusters
could be evaluated separately. This however would result in comparing a single-thread
process with a multi-thread one.

The utility improvements of the system follow a similar pattern as the execution time
where in small scales, under 300 apps, the GA method outperforms the proposed ones but
as the scale of the system increases, the benefit of clustering becomes more evident. From
these tests a limitation of the weighted clustering methods can be observed, as well as they
perform poorly in the multi-parameter scenario where there is no clear direction to what

makes a good utility as in the case of the delay improvement and the Capability scenario.

7.8 Component Evaluation

The component evaluation section is designed to show the characteristics of each method,
broken down to its components. In this section, the Clustering components, Resource
Allocation and weight Training components will be analysed. This is done to show how
each contributes to the overall execution time and resulting utility that can be found in the
previous figures.

An overview of the execution times of these components can be seen in Fig. 7.38 where
the scaling of the execution times for these components can be seen. In this figure, the
execution times are shown in logarithmic scale as the method vary largely in their run-time

duration.

130 Evaluation and Analysis

Time Distribution of Method

e L I L _Sampling
_ [Clustering
* [Weights
""""""""" [1Clustering GA
100 150 200 250 300

Fog Size

Fig. 7.38 Components Time Distribution

From this figure, the Clustering GA only shows the average time for each cluster and not
their values combined. From these tests the exponential increase in the processing time for

Clustering can be noted with the other components retaining lower slope gradients.

7.8.1 Resource Allocation

The resource allocation testing scenario is designed to compare Allocation methods based on
their execution time and resulting utility after deployment. For these tests, only the Delay
and Multi-Parameter scenario are considered, as the Capability scenario requires weights
tuning to provide a valid solution resulting in only the Tuning based Resource Allocation to
have valid results.

These tests are run by generating a Fog environment of size 320 for the Delay and
Multi-Parameter scenario after which the Sampling method is run to identify to best weights
for the system. After the weights are identified, the Fog is Clustered using the Weighted
Clustering method and the tuned weights after which each allocation method is used to
allocate gateways to the clusters. Their run-time is recorded and local GA is run to identify
the resulting utilities.

In the Delay scenario from Fig. 7.39 , the Random, Connection and Full Weights based
methods have comparable result, with the Connection based on being the worst. The Full

7.8 Component Evaluation 131

Delay Scenario Resource Allocation Evaluation

104
[]Execution Time 1y
I Relative Utility [
10% o ==
10.998
102 k
g 10.996 >
s 5
2 10'¢ 40994 2
3 g
& 4
100 F 10.992
10.99
101k
-40.988
10-2 | —1 I
Random Connection FullWeights Tuning

Resource Allocation Method

Fig. 7.39 Resource Allocation Comparison Delay Scenario

Multi-Parameter Scenario Resource Allocation Evaluation

[JExecution Time o
I Relative Utility - 14
108 £]
4 0.995
102 L 10.99
o -
£ 0.985 2
= =
c 10" 1098 2
g o
§ 10.975 %
x 0L 2
o 40.97
1 0.965
10k
10.96
21 -10.955
10°E [|

Random Connection FullWeights Tuning
Resource Allocation Method

Fig. 7.40 Resource Allocation Comparison Multi-Parameter Scenario

Weights based method considers all app to gateway parameters equally important which is
shown to be almost as good as considering them at random, while considering connection
parameters as the most important leads to the worse results. The quality of the results based
on the tuning weights allocation shows the importance of finding good weights and allocating

resources to clusters in this way.

132 Evaluation and Analysis

The Multi-Parameter scenario from Fig. 7.40 shows the difficulty of allocating Gateways
to clusters that have a high heterogeneity and varying utilities and objectives. Here the quality
of results produced by the connection-based allocation worsens, and as more parameters
gain importance the quality of the Full weights allocation comes close to that of the Tuned
weights, which despite this still provides the best solution.

When considering the execution times of these methods, it’s worth noting that the
random allocation while not having the best performance in the utility category is by far the
fastest method. The execution time for the rest of the methods scale as expected with their

complexity.

7.8.2 Clustering

Delay Scenario Clustering Evaluation

108 w
[JExecution Time
I Relative Utility R —

+10.9998

e

o
N
T

+10.9996

10.9994

+10.9992

10.999

Execution Time
5_.
Relative Utility

+10.9988

+0.9986

-

o
o
T

+10.9984

+10.9982

[]

Random Connection FullWeights Tuning
Clustering Method

Fig. 7.41 Clustering Comparison Delay Scenario

The Clustering evaluation tests are designed to test and compare the proposed clustering
methods to find their run-time characteristics. For these tests, only the Delay and Multi-
Parameter scenario are considered as well based on the same rationale as in the previous
subsection.

These tests are run by generating a Fog environment of size 320 for the Delay and
Multi-Parameter scenario after which the Sampling method is run to identify to best weights
for the system. After the weights are identified, the Fog is Clustered using the four methods.

Their runtime is recorded and then a weighted allocation method based on the calculated

7.8 Component Evaluation 133

Multi-Parameter Scenario Clustering Evaluation

10°
[Execution Time
I Relative Utility

-

o
N
T

Execution Time
= =
2 >,

Relative Utility

_k
S
T

]

Random Connection FullWeights Tuning
Clustering Method

Fig. 7.42 Clustering Comparison Multi-Parameter Scenario

weights is run to allocate gateways to the clusters. Finally, a local GA is run to identify the
resulting utilities which are then attributed to the clustering methods.

In the Delay scenario from Fig. 7.41 the advantages of the Connection based clustering
are visible as the main reason two application should be deployed together is to reduce the
connection delay between the two. This fact can be seen from the tuned weights that are
found for the scenario as from the results as well. In these tests the Full Weights and Random
allocation do not perform too well as there is a clear direction for clustering. As in the
previous scenarios, the Tuning parameters based method works best.

The Multi-Parameter scenario from Fig. 7.42 has similar results as for the Resource
Allocation of the same scenario where the Connection Clustering and Full Weights methods
do not perform so well while the Random but fair allocation has close results. In this situation
the Tuning methods performs best as well.

The execution time for this set of tests resembles that of the allocation scenario with
the Random Clustering outperforming the Connection and Full weights based allocation at
utility and overall having the lowest execution times. The rest of the methods performed as
expected with the Full Weights and Tuning Weights ones being the slowest.

7.8.3 Weights Tuning

The Weights Tuning tests are designed to show how the training algorithms works, how it finds

new weights and how the under/over-fitting components works. The tests were performed on

134 Evaluation and Analysis

08 - Clustering Weights Sampling Method] _Clustering Weights Initial Weights Method
Constraints -
0.6 r RequirementSim gonsgramts)
ResourceShare Requnremgﬂt&m
L MessageRate esourcesnhare
8 04 UtilityWeights 3 05F MessageRate
= UnitLoad = UtilityWeights
& © "
> 02 Distance > U_nnLoad
0 N\ 2] Distance
S 0)
) e |
= 02 =
-0.4 +
06 i i i i i 05 i) | i
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000
Execution Time Execution Time
Allocation Weights Sampling Method Allocation Weights Initial Weights Method
08 Capabilities 08y Capabilities
SharedRes SharedRes
PerfToULoad 0.6 PerfToULoad
0.4 Baseload Baseload
§ CapToULoad § 04} CapToULoad
g 0z g
%) o 0.2F
= =
2 0 =
[(5] 0
= =
2] 027 A~
0.4 i i i i i 04 i i i i
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000
Execution Time Execution Time

Fig. 7.43 Weights Tuning Evaluation for the Delay Scenario

all the scenarios, as they propose different challenges and the methods performance varies
in each. The tests were conducted at Fog Sizes of 320 for the Delay and Multi-Parameter
Scenarios and with a size of 120 for the Capability Scenario. To run the tests an initial Fog
Environment is generated and both methods are deployed on the same environment. With the
difference in desired cluster sizes, all scenarios resulted in the methods generating cluster
counts ranging from 7 to 11.

The resulting outputs are the weights for each property at different iterations showing
at what time those iterations were found. The weights that resulted in the best Utilities are
marked with triangles of the same color. The three scenarios can be seen in Fig. 7.43 for the
delay scenario, Fig. 7.44 for the Multi-Capability scenario and Fig. 7.45 for the Capability
Scenario.

Considering the Delay Scenario tests from Fig. 7.43, the impact of the initial sampling
can be seen at the lower end of tests where there is a spike for certain parameters, after
which when the whole system is deployed the confidence in these parameters drops. This
phenomenon can be seen in some of the later tests as well as in due to the relatively small
size of the sampling test, which is set to 10% of the total size. This spike or rough ini-

7.8 Component Evaluation 135

Clustering Weights Sampling Method Clustering Weights Initial Weights Method
1 n 1 Constraints
Constraints RequirementSim
RequirementSim 0.8 ResourceShare
08k ResourceShare MessageRate
MessageRate UtilityWeight
@ ——— UtilityWeights @ 06 Onittoad
> 06 UnitLoad = Distance
g Distance S 04
2 04} 2
5 S 0271
(3] (]
= 02 — e —— =,
0r \—_A; 02}
0.2 Le : : : ‘ ‘ ‘ 0.4 : :
0 1000 2000 3000 4000 5000 6000 0 5000 10000 15000
Execution Time Execution Time
Allocation Weights Sampling Method 0.8 Allocation Weights Initial Weights Method
Capabilities ’ Capabilities
0.8 SharedRes SharedRes
PerfToULoad 0.6 PerfToULoad
BaselLoad : BaselLoad
206 CapToULoad @ CapToULoad
;?, § 0.4
@ 0.4 a 4
5 S 02} X
o2} A 2
AN |
° e — O
I I I I I I I 02 I I)
0 1000 2000 3000 4000 5000 6000 0 5000 10000 15000
Execution Time Execution Time

Fig. 7.44 Weights Tuning Evaluation for the Multi-Parameter Scenario

tial values perform better for the stability of the system, as opposed to the Initial Weights
tests where these values fluctuate more, due to the initial weights set where all parame-
ters are equal. For this delay scenario, the Initial weights tests took longer to complete
as well as the fluctuations reduced the change of stagnation. This is sometimes benefi-
cial and results in better utilities. The best utility for the scenario of 824.06 was found
with the App Weights {ResourceShare = 0.505, Distance = —0.494} and Gateway Weights
of {SharedRes = 0.637, Per fToU Load = —0.225,CapToU Load = —0.137} by the Initial
Weights scenarios at 4560.59 seconds showing the advantage of the confidence adjustments.
The solution found by the sampling method was just 1 point off at 823.21 and was found at
time 5421.72.

The results of the Multi-Parameter tests can be seen in Fig. 7.44 where the initial spikes
of the sampling method are one again visible. The instability of the initial weights approach
can be seen as well with large variation in parameters and with even a reset of these at
4923.41, where the weights did not result in any valid deployments and the the initial weights

136 Evaluation and Analysis

Clustering Weights Sampling Method Clustering Weights Initial Weights Method
1 Constraints 1t Constraints
RequirementSim RequirementSim
ResourceShare ResourceShare
0.8 MessageRate 0.8 MessageRate
@ UtilityWeights » UtilityWeights
] UnitLoad o 0.6 UnitLoad
2 0.6 Distance 2 Distance
> >
" o 0.4+
£ o4 :
© @ 02
=02 =
ok
or S
\/ 0.2
0 200 400 600 800 1000 0 100 200 300 400 500 600 700
Execution Time Execution Time
Allocation Weights Sampling Method Allocation Weights Initial Weights Method
t2r Capabilities 0.7
s SharedRes
gz:gfg’a'fad 06 Capabilities
08 F SharedRes
2 CapToULoad 2 0.5 PerfToULoad
= 06 = Baseload
g ‘>“ 0.4 CapToULoad
©o 04F 2
-5, . —5’ 0.3
© 021 (]
2 ~ 202
0 [- /_
0.1 >
ol
-0.4 b L L L L ‘ L L L
0 200 400 600 800 1000 0 100 200 300 400 500 600 700
Execution Time Execution Time

Fig. 7.45 Weights Tuning Evaluation for the Capability Scenario

were the only valid one s known. This instability resulted in a worse results for the ini-
tial weights approach. The best utility for the scenario of 276.70 was found with the App
Weights {UtilityWeights = 0.509, ResourceShare = 0.147,Constraints = 0.099, Distance =
—0.121, Requirement Sim = —0.122} and Gateway Weights of {SharedRes = 0.638, Per f ToU Load =
0.201,CapToU Load = —0.112, BaseLoad = —0.048} by the Sampling Weights scenarios at
3277.234 seconds showing the advantage of sampling for the convergence of these methods.
The solution found by the initial weights method was just 266.21 and was found at time
10078.12

The Capability Scenario from Fig. 7.45 shows a case where the initial sampling results
were counterproductive and sent the method in a wrong direction resulting in more than 200
seconds of added time in finding similar weights as the Initial weights method did. This sce-
nario has a clear set of goals as well, where the capabilities to requirements fitting is key. This
makes it a more suitable scenario for the method as opposed to the Multi-parameter scenario
that has numerous directions of interest. The best utility for the scenario of 104.54 was found
with the App Weights {UtilityWeights = 0.280,Constraints = 0.253, RequirementSim =
0.466} and Gateway Weights of {Capabilities = 1.0} by the Sampling Weights scenarios at

7.8 Component Evaluation 137

516.97 seconds showing the advantage of sampling for the convergence of these methods.
The solution found by the initial weights method was 103.42 and was found at time 231.91.

7.8.4 Conclusions

When considering the execution time of the methods through the varying scenarios and
component test, several conclusions can be drawn. In the overall picture, the Resource
Allocation and Clustering still require a fraction of the time of the local GA deployments,
but as the size of the Fog increases so does the impact of these methods. The execution time
of the sampling method is comparatively low as well, and it does not suffer from the scaling
issues the Resource Allocation and Clustering do.

From the utility comparison of the individual components, the main conclusion is that
while the Random allocations and clustering are much faster than the other methods, deter-
mining the the right weights for a system, clustering and allocating resources based on these
provides the best solution in most cases. In the case of the Capability scenario this is the only
one that can reliably provides solutions. From these tests, the conclusion can be made that
using the wrong weights for a system can perform worse than random deployments which
highlights the importance of the identification and tuning of these weights.

From the weights tests section, some of the benefits and drawbacks of using sampling
become apparent, as having some initial weights for deployment can result in finding a
solution faster as in a faster convergence, but this might result in overconfidence over the
results of the sampling. The steps increase in the tests with the increase in the Fog size is
also notable. This can be seen in both the performance evaluations and in the differences
between the Delay and Multi-Parameter tuning and Capability tuning tests.

The initial weights scenario as it allows all parameters to be considered, while sometimes
finding better solutions most of the times struggles with determining the right weights and in
the case of the Capabilities scenario this usually means that no, or limited valid solutions are
found. These tests also support the need for adequate sample selection and the need to learn

from failed attempts.

Chapter 8

Conclusions and Future Work

8.1 Results Overview

In this chapter an overview of the works will be presented alongside the initial requirements,
objectives and the analysis of the outcomes. Each component of the framework will be
scrutinised to identify the novelties, contribution to the state of the art and the areas where it
may fall short of the requirements or the downsides of certain approaches.

When looking at the framework as a whole it provides a complete image of platform
support for application hosting migration and systems setup on top of which the evaluation
and improvement of deployments based on the proposed model through the optimisation
methods is possible.

There are some limitations however as the proposed scenario looks at a Shared Environ-
ment based Gateway and thus the model and method are tailored for such a scenario. VM
and Container based solutions would offer simpler Models and may require simpler methods
to solve with the underlying problem being solvable in polynomial time. Furthermore, the
scaling and testing data generation is based on the WWW scaling model that was identified
in the use cases. In situations where this is not present the clustering methods would be less

effective.

8.1.1 Platform Review

The proposed Fog and 10T platform allows applications to be deployed closer to the network
edge and migrated to the cloud based on the users’ requirements. Using the OSGI gateway
for application deployment allows life-cycle management of applications as well as the

deployment of a set of applications as they can work together in a Micro-service environment.

140 Conclusions and Future Work

Furthermore this solution allows parts of the applications to be migrated to the cloud where
the more processor intensive tasks might be performed.

Compared to similar research in the field, this platform, through dynamic abstraction,
allows for a protocol agnostic application environment, as well as a modular deployment of
applications to the gateway. The platform also provides a solution for the increased horizontal
integration of devices by allowing multiple tenant connections to be configured from the
gateway that may use resources available from different providers. It also provides for speedy
creation of test environments and the option of migrating between cloud and gateways on
the region depending on processing needs. Furthermore, the gateway makes steps towards a
better horizontal integration by allowing the connection through different drivers to local and
cloud resources while allowing different application environments and device connections.
In an industrial environment this would allow for faster time to market, a more dynamic
production environment, faster software upgrades and easier testing.

The limitations of the presented gateway lie in the added overhead caused by having to
translate messages from one driver/protocol to the systems protocol as well as in the security
and group reliability issues caused by the shared environment. The overhead caused by
these components can be seen in the models for the routing and message loads. These are
relatively small compared to the characteristic ping or networking delays but they are present
and need to be acknowledged. Furthermore, the drivers and brokers may cause bottlenecks
on the system as their implementation might not be designed for high data-rates but this
is dependent on the developers and is not a characteristic of the framework. The security
and interdependence issues arise from applications from different providers being deployed
in the same environment, making their interaction possible. This can cause problems if an

application overloads the system or attempt snooping on plug in data mining activities.

8.1.2 Model Review

This model provides a way of measuring and estimating the run-time parameters and migra-
tion benefits of applications in these shared environment systems. The experimental load
model description derived from measuring run-time parameters over physical systems has
been developed and used to represent the gateway and application loads, which provide a
more realistic estimation than theoretical ones presented in other papers.The experimental
results have shown that the system has an overall accuracy of over 91%.

The assignment problem that results from attempting to minimise the proposed utilities
is an NP hard placement problem with interdependent parameters that has proven to be a
challenging one for both heuristic and deterministic methods, neither being able to provide
the best results in all cases.

8.1 Results Overview 141

Some of the drawbacks of the proposed model are related to its narrow parameter focus,
its generality and the resulting optimisation problems hardness. The presented model looks
at estimating the load of the system and applications and derives the delays and the reliability
from these considering constraint and weights as well. The later can be considered as SLA
or QoS Constraints and requirements but addressing these directly is not done. Furthermore,
recent trends show that Energy use is an increasing factor which is not considered in this work,
as replication and zero points of failure reductions either. Due to the testing environment
the generality of the model is affected as it would need simplification to work with VM-s
and Container, but it would work with other Python or Ruby based shared systems. The final
problem with the proposes solution is the complexity of the model. Solving the system for
this model results in an NP-hard problem, so sacrificing some of the accuracy of the model

for the sake of an easier allocation problem might be worth considering as well.

8.1.3 Deployment Method Review

The proposed global optimisation method attempts to solve the problem of the exponentially
increasing search-space in case of the Application to Gateway allocation problem in the
presented Fog Systems. The solution for this is to reduce or to split this search-space in such
a way that as little information or possible good solutions are lost. This method attempts
to do this by forming clusters and assigning resources to these in affect choosing solution
regions that are then optimised locally. The components of the method aim to find ways of
grouping applications so that these groups have the highest possible utility. This is done by
looking at their properties and how they relate to each-other and to the gateways and finding
those properties whose similarity makes applications deployed together result in a higher
utility.

This solution proves to be very effective both for scalability and for improved results,
given a certain size of Fog system. This is partially thank to the lack of initial assumptions
made about the system but rather allowing the methods to figure out the interested variables.
This generality has its toll however as for the simple instances the connection clustering
methods find similar solutions but in less time. Based on the validation tests it can be
concluded that the optimisation method works best in large-scale environments that have a
complex set of requirements and utilities, where the solution for attaining these would be
difficult to find by a human.

The drawbacks of the system are liked to the core approach of the design where everything
is based on greedy or quick-sort style algorithms where the best solution is not as important
as a good solution. This can lead to sub-optimal results, but due to the number of iterations
and the size of some problems still results in large processing times. Furthermore, the training

142 Conclusions and Future Work

and sampling algorithms while sometimes finding new and better solutions through direction
changes, in most cases fail to do so. All of these are addressed by the generality to time
complexity figure as well as the scalability analysis in the validation section that shows where
concessions are made between the method variations, which would supports the decision on

which to use for a system.

8.2 Answer to Research Questions

When considering the research questions and how these were answered, the niche questions
are shown first and what was found. Based on these the big questions are answered and their

completeness analysed.

Niche Questions

e What are the requirements and characteristics of future Industry 4.0 Gateways and
how can these be translated into protocols and systems?

To answer this questions a number of components have been suggested such as the
virtualsiation of devices and the translation of messages to allow for more interoperability
and horizontal integration as opposed to vertical integration. A more decentralised system is
suggested as well through the gateway platform. These directions were than translated into a
framework and implemented and tested in the physical environment.

e How can changes in the model be analysed and estimated using the run-time
parameters and connections of the applications and gateways?

A number of use-cases were deployed and their applications were migrated between
fog nodes and the cloud. The effects of this were monitored and together with the platform
monitoring limitations and a literature review of the parameters of interest a model was
formulated. This model based its estimations on the connections and linked nature of
applications.

e What are the challenges of application deployment in Fog systems and what
methods can be proposed to diminish their effects?

Use-Cases were analysed to see how Fog systems scale and what is their typical structure.
This data was used to determine the hardness of their deployment and through this analysis

methods were proposed that reduced the search-space to improve performance indices.

8.3 Future Work and Directions 143

Main Question

e How can large application systems deployments be analysed and improved in highly
heterogeneous Fog environments ?

To answer this question, first a platform was designed that can house future Industrial
applications. Based on this platform an application and gateway model was formulated that
allows the real-time and offline analysis of these systems. Finally, a global optimisation
method is proposed that aims to improve system health and allow for the deployment of large

highly heterogeneous systems.

8.3 Future Work and Directions

There are a number of future directions or research interests that can be expressed based on
this thesis. These can be related to the missing components and the limitations of this work,
but also to niche problems or opportunities that were not addressed.

e When considering the Platform a number of improvements can be made. A number
of papers have suggested a platform model that looks all the main brokers, translators and
dongles these platforms need to encompass a good portion of the existing technologies.
Implementing and testing these would reveal the true possibilities and perspectives of such
gateways.

e The deployment of multiple application containers or VM’s on a system might aid in
the security and interdepence issue of Shared systems and would increase their generality
as you could deploy Java Python and other apps on one system, reducing platform lock-in.
This would result in more complication optimisation scenarios as in the 4-th type but could
possibly increase the resulting system utility.

e The existing model can be generalised even further by considering the characteristic
behaviour of a number of application types as some may be distributable running multiple
threads as well as looking at the reliability differences between gateways and the cloud and
putting these in a formal model.

e The proposed model can be extended to look at QoS improvements, Billing and Energy
Consumption reduction.

e While correlation calculation was used to determine weights and the clustering methods
were based on these machine learning methods could be applied to these systems to verify if
this allocation or clustering could be identified through these as well.

e The proposed method is a global optimisation approach to application deployment.

Load Balancing style approaches can be proposed that are based on the existing clusters

144 Conclusions and Future Work

where a mechanism could add new peers to existing clusters, create new clusters and then
locally redistribute resources to match this change.

e Agents based systems could be employed to both determine clusters and to allow these
collaborative groups to then compete for resources which are the gateways. Clustering the
applications is a good start for defining the game but more work needs to be done in this

direction.

References

Aazam, Mohammad and Eui-Nam Huh (2014). “Fog computing and smart gateway based
communication for cloud of things”. In: Future Internet of Things and Cloud (FiCloud),
2014 International Conference on. IEEE, pp. 464—470.

— (2015). “Fog computing micro datacenter based dynamic resource estimation and pricing
model for [oT”. In: Advanced Information Networking and Applications (AINA), 2015
IEEE 29th International Conference on. IEEE, pp. 687—694.

Aazam, Mohammad, Imran Khan, et al. (2014). “Cloud of Things: Integrating Internet of
Things and cloud computing and the issues involved”. In: Proceedings of 2014 11th
International Bhurban Conference on Applied Sciences and Technology, IBCAST 2014,
pp- 414-419. por: 10.1109/IBCAST.2014.6778179.

Aggarwal, Deepak kumar and Rajni Aron (2017). “IoT based Platform as a Service for
Provisioning of Concurrent Applications”. In: arXiv: 1711.10685. URL: http://arxiv.org/
abs/1711.10685.

Aibinu, A. M. et al. (2016). “A novel Clustering based Genetic Algorithm for route op-
timization”. In: Engineering Science and Technology, an International Journal 19.4,
pp- 2022-2034. 1SSN: 22150986. poI: 10.1016/j.jestch.2016.08.003. URL: http:
//dx.doi.org/10.1016/j.jestch.2016.08.003.

Alliance, OSGi (2003). Osgi service platform, release 3. 10S Press, Inc.

Ankerst, Mihael et al. (1999). “OPTICS: ordering points to identify the clustering structure”.
In: ACM Sigmod record. Vol. 28. 2. ACM, pp. 49-60.

Azeez, Afkham et al. (2010). “Multi-tenant SOA middleware for cloud computing”. In:
Cloud computing (cloud), 2010 ieee 3rd international conference on. IEEE, pp. 458—465.

Baccarelli, Enzo et al. (2016). “Energy-efficient dynamic traffic offloading and reconfigura-
tion of networked data centers for big data stream mobile computing: review, challenges,
and a case study”. In: IEEE Network 30.2, pp. 54-61.

Barreto, L., A. Amaral, and T. Pereira (2017). “Industry 4.0 implications in logistics: an
overview”. In: Procedia Manufacturing 13. Manufacturing Engineering Society Inter-
national Conference 2017, MESIC 2017, 28-30 June 2017, Vigo (Pontevedra), Spain,
pp. 1245-1252. 1SSN: 2351-9789. DOTI: https://doi.org/10.1016/j.promfg.2017.09.045.
URL: http://www.sciencedirect.com/science/article/pii/S2351978917306807.

Bauer, Matthias, Gunther May, and Vivek Jain (2014). “A wireless gateway approach enabling
industrial real-time communication on the field level of factory automation”. In: Emerging
Technology and Factory Automation (ETFA), 2014 IEEE. 1EEE, pp. 1-8.

Bellavista, Paolo and Alessandro Zanni (2017). “Feasibility of fog computing deployment
based on docker containerization over raspberrypi’. In: Proceedings of the 18th Interna-
tional Conference on Distributed Computing and Networking. ACM, p. 16.

Beran, Peter Paul, Elisabeth Vinek, and Erich Schikuta (2011). “A cloud-based framework
for QoS-aware service selection optimization”. In: Proceedings of the 13th International

https://doi.org/10.1109/IBCAST.2014.6778179
http://arxiv.org/abs/1711.10685
http://arxiv.org/abs/1711.10685
http://arxiv.org/abs/1711.10685
https://doi.org/10.1016/j.jestch.2016.08.003
http://dx.doi.org/10.1016/j.jestch.2016.08.003
http://dx.doi.org/10.1016/j.jestch.2016.08.003
https://doi.org/https://doi.org/10.1016/j.promfg.2017.09.045
http://www.sciencedirect.com/science/article/pii/S2351978917306807

146 References

Conference on Information Integration and Web-based Applications and Services - iiWAS
11. New York, New York, USA: ACM Press, p. 284. ISBN: 9781450307840. DOTI: 10.
1145/2095536.2095584. URL: http://dl.acm.org/citation.cfm?doid=2095536.2095584.

Bhondekar, Amol P et al. (2009). “Genetic algorithm based node placement methodology
for wireless sensor networks”. In: Proceedings of the international multiconference of
engineers and computer scientists. Vol. 1, pp. 18-20.

Bi, Zhuming, Li Da Xu, and Chengen Wang (2014). “Internet of things for enterprise
systems of modern manufacturing”. In: IEEE Transactions on industrial informatics 10.2,
pp- 1537-1546.

Bittencourt, L F et al. (2015). “Towards Virtual Machine Migration in Fog Computing”.
In: 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing (3PGCIC), pp. 1-8. DOI: 10.1109/3PGCIC.2015.85.

Bittencourt, Luiz Fernando et al. (2015). “Towards virtual machine migration in fog com-
puting”. In: P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2015 10th
International Conference on. IEEE, pp. 1-8.

Blackburn, M and G Grid (2008). “Five ways to reduce data center server power consump-
tion”. In: The Green Grid.

Bonomi, Flavio et al. (2012a). Fog computing and its role in the internet of things. Helsinki,
Finland. DOTI: 10.1145/2342509.2342513.

— (2012b). “Fog computing and its role in the internet of things”. In: Proceedings of the
first edition of the MCC workshop on Mobile cloud computing. ACM, pp. 13—-16.

Borrego, Maura, Elliot P Douglas, and Catherine T Amelink (2009). “Quantitative, qualitative,
and mixed research methods in engineering education”. In: Journal of Engineering
education 98.1, pp. 53-66.

Botella, Cristina et al. (2009). “An e-health system for the elderly (Butler Project): A pilot
study on acceptance and satisfaction”. In: CyberPsychology & Behavior 12.3, pp. 255—
262.

Botta, Alessio et al. (2016). “Integration of cloud computing and internet of things: a survey”.
In: Future Generation Computer Systems 56, pp. 684—700.

Boyabatli, Onur and Thsan Sabuncuoglu (2004). “Parameter selection in genetic algorithms”.
In: Journal of Systemics, Cybernetics and Informatics 4.2, p. 78.

Brewer, Eric A (2015). “Kubernetes and the path to cloud native”. In: Proceedings of the
Sixth ACM Symposium on Cloud Computing. ACM, pp. 167-167.

Brownlee, Jason et al. (2007). “A note on research methodology and benchmarking op-
timization algorithms”. In: Complex Intelligent Systems Laboratory (CIS), Centre for
Information Technology Research (CITR), Faculty of Information and Communication
Technologies (ICT), Swinburne University of Technology, Victoria, Australia, Technical
Report ID 70125.

Burkard, Rainer E et al. (1998). “The quadratic assignment problem”. In: Handbook of
combinatorial optimization. Springer, pp. 1713-18009.

Chaari, Rihab et al. (2016). “Cyber-physical systems clouds: A survey”. In: Computer
Networks 108, pp. 260-278. DOI: http://dx.doi.org/10.1016/j.comnet.2016.08.017.

Chao, Kuo-Ming et al. (2015). “Cloud E-learning for Mechatronics: CLEM”. In: Future
Generation Computer Systems 48, pp. 46-59.

Chen, Xu et al. (2016). “Efficient multi-user computation offloading for mobile-edge cloud
computing”. In: IEEE/ACM Transactions on Networking 24.5, pp. 2795-2808.

Christophe, Benoit et al. (2011). “The web of things vision: Things as a service and interaction
patterns”. In: Bell labs technical journal 16.1, pp. 55-61.

https://doi.org/10.1145/2095536.2095584
https://doi.org/10.1145/2095536.2095584
http://dl.acm.org/citation.cfm?doid=2095536.2095584
https://doi.org/10.1109/3PGCIC.2015.85
https://doi.org/10.1145/2342509.2342513
https://doi.org/http://dx.doi.org/10.1016/j.comnet.2016.08.017

References 147

Cicirelli, Franco et al. (2017). “Edge Computing and Social Internet of Things for large-scale
smart environments development”. In: IEEE Internet of Things Journal 4662.c, pp. 1-15.
ISSN: 23274662. DOI: 10.1109/JI0T.2017.2775739.

Cisco Systems (2016). “Fog Computing and the Internet of Things: Extend the Cloud to
Where the Things Are”. In: Www. Cisco.Com, p. 6.

Cruz, Mauro A. A. da et al. (2018). “A Reference Model for Internet of Things Middleware”.
In: IEEE Internet of Things Journal 4662.c, pp. 1-1. ISSN: 2327-4662. pOI: 10.1109/
JIOT.2018.2796561. URL: http://ieeexplore.ieee.org/document/8267034/.

Dastjerdi, Amir Vahid and Rajkumar Buyya (2016). “Fog computing: Helping the Internet of
Things realize its potential”. In: Computer 49.8, pp. 112-116.

Datta, Soumya Kanti, Christian Bonnet, and Navid Nikaein (2014). “An IoT gateway centric
architecture to provide novel M2M services”. In: Internet of Things (WF-10T), 2014 IEEE
World Forum on. IEEE, pp. 514-519.

Deng, R et al. (2016). “Optimal Workload Allocation in Fog-Cloud Computing Toward
Balanced Delay and Power Consumption”. In: IEEE Internet of Things Journal 3.6,
pp- 1171-1181. port: 10.1109/J1I0T.2016.2565516.

Dhinesh Babu, L D and P Venkata Krishna (2013). “Honey bee behavior inspired load
balancing of tasks in cloud computing environments”. In: Applied Soft Computing 13.5,
pp- 2292-2303. DOI: http://dx.doi.org/10.1016/j.as0c.2013.01.025.

Diaz, Manuel, Cristian Martin, and Bartolomé Rubio (2016). “State-of-the-art, challenges,
and open issues in the integration of Internet of things and cloud computing”. In: Journal
of Network and Computer Applications 67, pp. 99-117. 1SSN: 10848045. por1: 10.1016/j.
jnca.2016.01.010.

DIN (2016). German Standardization Roadmap — Industry 4.0 (Version 2).

Distefano, Salvatore, Giovanni Merlino, and Antonio Puliafito (2015). “A utility paradigm
for IoT: The sensing Cloud”. In: Pervasive and mobile computing 20, pp. 127-144.

Do, Cuong T. et al. (2015). “A proximal algorithm for joint resource allocation and minimiz-
ing carbon footprint in geo-distributed fog computing”. In: 2015 International Conference
on Information Networking (ICOIN). IEEE, pp. 324-329. I1SBN: 978-1-4799-8342-1. DOI:
10.1109/ICOIN.2015.7057905.

Duro, Jodo A, Robin C Purshouse, and Peter J Fleming (2018). “Collaborative Multi-
Objective Optimization for Distributed Design of Complex Products”. In:

Ester, Martin et al. (1996). “A density-based algorithm for discovering clusters in large
spatial databases with noise.” In: Kdd. Vol. 96. 34, pp. 226-231.

Fortino, Giancarlo et al. (2014a). “Integration of agent-based and cloud computing for
the smart objects-oriented [0T”. In: Proceedings of the 2014 IEEE 18th International
Conference on Computer Supported Cooperative Work in Design (CSCWD). 1EEE,
pp- 493-498.

— (2014b). “Middlewares for Smart Objects and Smart Environments: Overview and Com-
parison”. In: Internet of Things Based on Smart Objects: Technology, Middleware and
Applications. Ed. by Giancarlo Fortino and Paolo Trunfio. Cham: Springer International
Publishing, pp. 1-27. 1ISBN: 978-3-319-00491-4.

Fox, Geoffrey C., Supun Kamburugamuve, and Ryan D. Hartman (2012). “Architecture
and measured characteristics of a cloud based internet of things”. In: Proceedings of the
2012 International Conference on Collaboration Technologies and Systems, CTS 2012,
pp- 6-12. po1: 10.1109/CTS.2012.6261020.

Al-Fugaha, Ala et al. (2015). “Toward better horizontal integration among IoT services”. In:
IEEE Communications Magazine 53.9, pp. 72-79.

https://doi.org/10.1109/JIOT.2017.2775739
https://doi.org/10.1109/JIOT.2018.2796561
https://doi.org/10.1109/JIOT.2018.2796561
http://ieeexplore.ieee.org/document/8267034/
https://doi.org/10.1109/JIOT.2016.2565516
https://doi.org/http://dx.doi.org/10.1016/j.asoc.2013.01.025
https://doi.org/10.1016/j.jnca.2016.01.010
https://doi.org/10.1016/j.jnca.2016.01.010
https://doi.org/10.1109/ICOIN.2015.7057905
https://doi.org/10.1109/CTS.2012.6261020

148 References

Garcia-Valls, Marisol, Tommaso Cucinotta, and Chenyang Lu (2014). “Challenges in real-
time virtualization and predictable cloud computing”. In: Journal of Systems Architecture
60.9, pp. 726-740. DOI: http://dx.doi.org/10.1016/j.sysarc.2014.07.004.

Giurgiu, loana et al. (2009). “Calling the cloud: Enabling mobile phones as interfaces to cloud
applications”. In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics) 5896 LNCS, pp. 83-102.
ISSN: 03029743. pot: 10.1007/978-3-642-10445-9_5.

Gubbi, Jayavardhana et al. (2013). “Internet of Things (IoT): A vision, architectural elements,
and future directions”. In: Future generation computer systems 29.7, pp. 1645-1660.
Gupta, Rushitaa and Raghav Garg (2015). “Mobile Applications Modelling and Security
Handling in Cloud-Centric Internet of Things”. In: Proceedings - 2015 2nd IEEE Interna-
tional Conference on Advances in Computing and Communication Engineering, ICACCE

2015, pp. 285-290. por: 10.1109/ICACCE.2015.119.

Gyrard, Amelie et al. (2015). “A Semantic Engine for Internet of Things: Cloud, Mobile De-
vices and Gateways”. In: Proceedings - 2015 9th International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing, IMIS 2015, pp. 336-341. DOI:
10.1109/IMIS.2015.83.

Hakiri, Akram et al. (2015). “Publish/subscribe-enabled software defined networking for
efficient and scalable IoT communications”. In: IEEE communications magazine 53.9,
pp- 48-54.

Hauke, Jan and Tomasz Kossowski (2011). “Comparison of values of Pearson’s and Spear-
man’s correlation coefficients on the same sets of data”. In: Quaestiones geographicae
30.2, pp. 87-93.

He, X et al. (2016). “A novel load balancing strategy of software-defined cloud/fog network-
ing in the Internet of Vehicles”. In: China Communications 13.Supplement2, pp. 140-149.
DOI: 10.1109/CC.2016.7833468.

Health and Safety Executive (2004). Health and safety in engineering workshops.

Heller, Brandon, Rob Sherwood, and Nick McKeown (2012). “The controller placement
problem”. In: Proceedings of the first workshop on Hot topics in software defined networks.
ACM, pp. 7-12.

Hemminger, Stephen (2005). “Network Emulation with NetEm”. In: URL: https://www.
rationali.st/blog/files/20151126-jittertrap/netem-shemminger.pdf.

Hill, Mark D and Michael R Marty (2008). “Amdahl’s law in the multicore era”. In: Computer
41.7.

Hong, Kirak et al. (2013). “Mobile fog: A programming model for large-scale applications
on the internet of things”. In: Proceedings of the second ACM SIGCOMM workshop on
Mobile cloud computing. ACM, pp. 15-20.

Hoque, Saiful et al. (2017). “Towards Container Orchestration in Fog Computing Infrastruc-
tures”. In: Proceedings - International Computer Software and Applications Conference
2, pp- 294-299. 1sSN: 07303157. por1: 10.1109/COMPSAC.2017.248.

Hossain, M Shamim et al. (2012). “Resource allocation for service composition in cloud-
based video surveillance platform”. In: Multimedia and Expo Workshops (ICMEW), 2012
IEEE International Conference on. IEEE, pp. 408—412.

Hu, J et al. (2010). “A Scheduling Strategy on Load Balancing of Virtual Machine Resources
in Cloud Computing Environment”. In: 2010 3rd International Symposium on Parallel
Architectures, Algorithms and Programming, pp. 89-96. DoI: 10.1109/PAAP.2010.65.

Intharawijitr, Krittin, Katsuyoshi lida, and Hiroyuki Koga (2016). “Analysis of fog model
considering computing and communication latency in 5G cellular networks”. In: 2016

https://doi.org/http://dx.doi.org/10.1016/j.sysarc.2014.07.004
https://doi.org/10.1007/978-3-642-10445-9_5
https://doi.org/10.1109/ICACCE.2015.119
https://doi.org/10.1109/IMIS.2015.83
https://doi.org/10.1109/CC.2016.7833468
https://www.rationali.st/blog/files/20151126-jittertrap/netem-shemminger.pdf
https://www.rationali.st/blog/files/20151126-jittertrap/netem-shemminger.pdf
https://doi.org/10.1109/COMPSAC.2017.248
https://doi.org/10.1109/PAAP.2010.65

References 149

IEEE International Conference on Pervasive Computing and Communication Workshops,
PerCom Workshops 2016, pp. 5-8. DOI: 10.1109/PERCOMW.2016.7457059.

Inzinger, Christian et al. (2014). “MADCAT: A methodology for architecture and deployment
of cloud application topologies”. In: Service Oriented System Engineering (SOSE), 2014
IEEE 8th International Symposium on. IEEE, pp. 13-22.

Ismail, Bukhary Ikhwan et al. (2015). “Evaluation of docker as edge computing platform”.
In: Open Systems (ICOS), 2015 IEEE Confernece on. IEEE, pp. 130-135.

Iyer, Ravishankar K. and David J. Rossetti (1986). “A Measurement-Based Model for
Workload Dependence of CPU Errors”. In: IEEE Transactions on Computers C-35.6,
pp- 511-519. 1SSN: 0018-9340. po1: 10.1109/TC.1986.5009428. URL: http://ieeexplore.
ieee.org/document/5009428/.

Jalali, Fatemeh et al. (2016). “Fog computing may help to save energy in cloud computing”.
In: IEEE Journal on Selected Areas in Communications 34.5, pp. 1728-1739.

Jayaraman, Prem Prakash et al. (2014). “Cardap: A scalable energy-efficient context aware
distributed mobile data analytics platform for the fog”. In: East European Conference on
Advances in Databases and Information Systems. Springer, pp. 192-206.

Jennings, Cullen, Jari Arkko, and Zach Shelby (2012). “Media types for sensor markup
language (SENML)”. In:

Jiang, Y (2016). “A Survey of Task Allocation and Load Balancing in Distributed Systems”.
In: IEEE Transactions on Parallel and Distributed Systems 27.2, pp. 585-599. DoI:
10.1109/TPDS.2015.2407900.

Jim Zw Li et al. (2011). “CloudOpt: multi-goal optimization of application deployments
across a cloud”. In: Proceedings of the 7th International Conference on Network and
Services Management. International Federation for Information Processing, pp. 162—170.
ISBN: 9783901882449. URL: https://dl.acm.org/citation.cfm?id=2147697.

Jingtao, Su et al. (2015). “Steiner tree based optimal resource caching scheme in fog comput-
ing”. In: China Communications 12.8, pp. 161-168.

Khodadadi, Farzad, Rodrigo N Calheiros, and Rajkumar Buyya (2015). “A data-centric
framework for development and deployment of Internet of Things applications in clouds”.
In: Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2015
IEEE Tenth International Conference on. IEEE, pp. 1-6.

Kim, Donghyeon, Choonhwa Lee, and Sumi Helal (2015). “Enabling elastic services for
OSGi-based cloud platforms™. In: Ubiquitous and Future Networks (ICUFN), 2015
Seventh International Conference on. IEEE, pp. 407-409.

Kim, Seungryong, Chorwon Kim, and JongWon Kim (2017). “Reliable smart energy IoT-
cloud service operation with container orchestration”. In: Network Operations and Man-
agement Symposium (APNOMS), 2017 19th Asia-Pacific. IEEE, pp. 378-381.

Kim, Seungryong, Chorwon Kim, and Jongwon Kim (2017). “Operation with Container
Orchestration”. In: pp. 378-381.

Kimak, Stefan and Jeremy Ellman (2013). “Performance testing and comparison of client
side databases versus server side”. In: Northumbria University.

Kleinberg, Jon M et al. (1999). “The web as a graph: Measurements, models, and methods”.
In: International Computing and Combinatorics Conference. Springer, pp. 1-17.

Koschel, Arne et al. (2012). “Asynchronous messaging for OSGi”. In: Journal of computing
and information technology 20.3, pp. 151-157.

Kovatsch, Matthias, Yassin N Hassan, and Simon Mayer (2015). “Practical semantics for the
Internet of Things: Physical states, device mashups, and open questions”. In: Internet of
Things (10T), 2015 5th International Conference on the. IEEE, pp. 54-61.

https://doi.org/10.1109/PERCOMW.2016.7457059
https://doi.org/10.1109/TC.1986.5009428
http://ieeexplore.ieee.org/document/5009428/
http://ieeexplore.ieee.org/document/5009428/
https://doi.org/10.1109/TPDS.2015.2407900
https://dl.acm.org/citation.cfm?id=2147697

150 References

Kovatsch, Matthias, Martin Lanter, and Simon Duquennoy (2012). “Actinium: A restful
runtime container for scriptable internet of things applications”. In: Internet of Things
(10T), 2012 3rd International Conference on the. IEEE, pp. 135-142.

Kum, Seung Woo et al. (2015). “A novel design of {IoT} cloud delegate framework to
harmonize cloud-scale {IoT} services”. In: 2015 {IEEE} {International} { Conference} on
{Consumer} {Electronics} ({ICCE}), pp. 247-248. por1: 10.1109/ICCE.2015.7066399.

Kunz, T (1991). “The influence of different workload descriptions on a heuristic load
balancing scheme”. In: IEEE Transactions on Software Engineering 17.7, pp. 725-730.
DOI: 10.1109/32.83908.

Lampesberger, Harald (2016). “Technologies for Web and cloud service interaction: a survey”.
In: Service Oriented Computing and Applications 10.2, pp. 71-110.

Lasi, Heiner et al. (2014). “Industry 4.0”. In: Business & Information Systems Engineering
6.4, pp. 239-242.

Lawler, Eugene L (1963). “The quadratic assignment problem”. In: Management science 9.4,
pp- 586-599.

Lee, Gunho, Byung-Gon Chun, and H Katz (2011). Heterogeneity-aware resource allocation
and scheduling in the cloud. Portland, OR.

Lee, Jay, Behrad Bagheri, and Hung-An Kao (2015). “A Cyber-Physical Systems architecture
for Industry 4.0-based manufacturing systems”. In: Manufacturing Letters 3, pp. 18-23.
DOI: http://dx.doi.org/10.1016/j.mfglet.2014.12.001.

Lee, Wangbong et al. (2016). “A gateway based fog computing architecture for wireless
sensors and actuator networks”. In: Advanced Communication Technology (ICACT), 2016
18th International Conference on. IEEE, pp. 210-213.

Li, Jim et al. (2009). “Performance model driven QoS guarantees and optimization in clouds”.
In: 2009 ICSE Workshop on Software Engineering Challenges of Cloud Computing.
IEEE, pp. 15-22. 1SBN: 978-1-4244-3713-9. po1: 10.1109/CLOUD.2009.5071528. URL:
http://ieeexplore.ieee.org/document/5071528/.

Li, Zhe (2016). “COAST: A Connected Open plAtform for Smart objecTs”. In: Proceedings of
the 2015 2nd International Conference on Information and Communication Technologies
for Disaster Management, ICT-DM 2015, pp. 166—172. DoOI1: 10.1109/ICT-DM.2015.
7402060.

Lu, Yang (2017). “Industry 4.0: A survey on technologies, applications and open research
issues”. In: Journal of Industrial Information Integration 6, pp. 1-10. ISSN: 2452414X.
DOI: 10.1016/}.j11.2017.04.005.

Lucas-Simarro, Jose Luis et al. (2013). “Scheduling strategies for optimal service deployment
across multiple clouds”. In: Future Generation Computer Systems 29.6, pp. 1431-1441.
DOI: http://dx.doi.org/10.1016/j.future.2012.01.007.

Mahmud, Redowan and Rajkumar Buyya (2016). “Fog Computing: A Taxonomy, Survey
and Future Directions”. In: arXiv: 1611.05539.

Mell, Peter and Timothy Grance (2011). The NIST Definition of Cloud Computing. Tech. rep.

Merkel, Dirk (2014). “Docker: lightweight linux containers for consistent development and
deployment”. In: Linux Journal 2014.239, p. 2.

Minh, Quang Tran et al. (2017). “Toward service placement on fog computing landscape”.
In: 2017 4th NAFOSTED Conference on Information and Computer Science, NICS 2017
- Proceedings 2017-Janua, pp. 291-296. po1: 10.1109/NAFOSTED.2017.8108080.

Newman, Mark EJ (2003). “The structure and function of complex networks”. In: SIAM
review 45.2, pp. 167-256.

Nierbeck, Achim et al. (2014). Apache Karaf Cookbook. Packt Publishing Ltd.

https://doi.org/10.1109/ICCE.2015.7066399
https://doi.org/10.1109/32.83908
https://doi.org/http://dx.doi.org/10.1016/j.mfglet.2014.12.001
https://doi.org/10.1109/CLOUD.2009.5071528
http://ieeexplore.ieee.org/document/5071528/
https://doi.org/10.1109/ICT-DM.2015.7402060
https://doi.org/10.1109/ICT-DM.2015.7402060
https://doi.org/10.1016/j.jii.2017.04.005
https://doi.org/http://dx.doi.org/10.1016/j.future.2012.01.007
http://arxiv.org/abs/1611.05539
https://doi.org/10.1109/NAFOSTED.2017.8108080

References 151

Ningning, S et al. (2016). “Fog computing dynamic load balancing mechanism based on
graph repartitioning”. In: China Communications 13.3, pp. 156-164. bo1: 10.1109/CC.
2016.7445510.

Nopiah, ZM et al. (2010). “Time complexity analysis of the genetic algorithm clustering
method”. In: Proceedings of the 9th WSEAS International Conference on Signal Process-
ing, Robotics and Automation, ISPRA, pp. 171-176.

Orabi, Mahmoud Husseini, Ahmed Husseini Orabi, and Timothy Lethbridge (2016). “Umple
as a component-based language for the development of real-time and embedded appli-
cations”. In: Model-Driven Engineering and Software Development (MODELSWARD),
2016 4th International Conference on. IEEE, pp. 282-291.

Osanaiye, Opeyemi et al. (2017). “From cloud to fog computing: A review and a conceptual
live VM migration framework™. In: IEEE Access 5, pp. 8284—8300.

Oueis, Jessica, Emilio Calvanese Strinati, and Sergio Barbarossa (2015). “The fog balancing:
Load distribution for small cell cloud computing”. In: Vehicular Technology Conference
(VIC Spring), 2015 IEEE 81st. IEEE, pp. 1-6.

Paraiso, Fawaz et al. (2012). “A federated multi-cloud PaaS infrastructure”. In: Proceedings -
2012 IEEE 5th International Conference on Cloud Computing, CLOUD 2012, pp. 392—
399. 1SSN: 2159-6182. po1: 10.1109/CLOUD.2012.79. arXiv: 1008.1900.

Pearson, Karl (1895). “Note on regression and inheritance in the case of two parents”. In:
Proceedings of the Royal Society of London 58, pp. 240-242.

Pereira, Pablo Puiial et al. (2013). “Enabling cloud-connectivity for mobile internet of things
applications”. In: Proceedings - 2013 IEEE 7th International Symposium on Service-
Oriented System Engineering, SOSE 2013, pp. 518-526. DO1: 10.1109/SOSE.2013.33.

Rahmani, Amir-Mohammad et al. (2015). “Smart e-health gateway: Bringing intelligence to
internet-of-things based ubiquitous healthcare systems”. In: Consumer Communications
and Networking Conference (CCNC), 2015 12th Annual IEEE. IEEE, pp. 826-834.

Ramezani, Fahimeh, Jie Lu, and Farookh Khadeer Hussain (2014). “Task-Based System Load
Balancing in Cloud Computing Using Particle Swarm Optimization”. In: International
Journal of Parallel Programming 42.5, pp. 739-754. DOI: 10.1007/s10766-013-0275-4.
URL: http://dx.doi.org/10.1007/s10766-013-0275-4.

Ruckebusch, Peter et al. (2016). “Gitar: Generic extension for internet-of-things architectures
enabling dynamic updates of network and application modules”. In: Ad Hoc Networks
36, pp. 127-151.

Rui, Jiang and Sun Danpeng (2015). “Architecture Design of the Internet of Things Based on
Cloud Computing”. In: 2015 Seventh International Conference on Measuring Technology
and Mechatronics Automation, pp. 206-209. DOI: 10.1109/ICMTMA.2015.57.

Sargent, Robert G (2007). “Verification and validation of simulation models”. In: Simulation
Conference, 2007 Winter. IEEE, pp. 124—-137.

Sarkar, Chayan et al. (2015). “DIAT : A Scalable Distributed Architecture for [oT”. In: 2.3,
pp- 230-239.

Savazzi, Stefano, Vittorio Rampa, and Umberto Spagnolini (2014). “Wireless cloud networks
for the factory of things: Connectivity modeling and layout design”. In: IEEE Internet of
Things Journal 1.2, pp. 180-195.

Scheuermann, Constantin, Stephan Verclas, and Bernd Bruegge (2015). “Agile factory-
an example of an industry 4.0 manufacturing process”. In: Cyber-Physical Systems,
Networks, and Applications (CPSNA), 2015 IEEE 3rd International Conference on. IEEE,
pp. 43-47.

https://doi.org/10.1109/CC.2016.7445510
https://doi.org/10.1109/CC.2016.7445510
https://doi.org/10.1109/CLOUD.2012.79
http://arxiv.org/abs/1008.1900
https://doi.org/10.1109/SOSE.2013.33
https://doi.org/10.1007/s10766-013-0275-4
http://dx.doi.org/10.1007/s10766-013-0275-4
https://doi.org/10.1109/ICMTMA.2015.57

152 References

Seo, Sangwon et al. (2015). “HePA: hexagonal platform architecture for smart home things”.
In: Parallel and Distributed Systems (ICPADS), 2015 IEEE 21t International Conference
on. IEEE, pp. 181-1809.

Singh, Meena et al. (2015). “Secure mqtt for internet of things (iot)”. In: Communication
Systems and Network Technologies (CSNT), 2015 Fifth International Conference on.
IEEE, pp. 746-751.

Sivieri, Alessandro, Luca Mottola, and Gianpaolo Cugola (2016). “Building Internet of
Things software with ELIoT”. In: Computer Communications 89, pp. 141-153.

Skarlat, Olena, Bachmann Kevin, and Stefan Schulte (2018). “FogFrame: Service placement,
deployment, and execution in the fog”. In: Future Generation Computer Systems.

Spearman, Charles (1910). “Correlation calculated from faulty data”. In: British journal of
psychology 3.3, pp. 271-295.

Stojmenovic, Ivan (2014). “Fog computing: A cloud to the ground support for smart things
and machine-to-machine networks”. In: Telecommunication Networks and Applications
Conference (ATNAC), 2014 Australasian. IEEE, pp. 117-122.

Taneja, Mohit and Alan Davy (2017). “Resource aware placement of IoT application modules
in Fog-Cloud Computing Paradigm”. In: Proceedings of the IM 2017 - 2017 IFIP/IEEE
International Symposium on Integrated Network and Service Management, pp. 1222—
1228. 1SSN: 9783901882890. DOTI: 10.23919/INM.2017.7987464.

Tao, Fei et al. (2014). “IoT-Based intelligent perception and access of manufacturing resource
toward cloud manufacturing”. In: IEEE Transactions on Industrial Informatics 10.2,
pp- 1547-1557. port: 10.1109/T11.2014.2306397.

Trappey, A J C et al. (2016). “A Review of Technology Standards and Patent Portfolios
for Enabling Cyber-Physical Systems in Advanced Manufacturing”. In: IEEE Access 4,
pp. 7356-7382. po1: 10.1109/ACCESS.2016.2619360.

Truong, Hong-Linh and Schahram Dustdar (2015). “Principles for engineering IoT cloud
systems”. In: IEEE Cloud Computing 2.2, pp. 68-76.

Verba, Nandor, Kuo-Ming Chao, Anne James, Daniel Goldsmith, et al. (n.d.). “Platform as
a service gateway for the Fog of Things”. In: Advanced Engineering Informatics. DOI:
http://dx.doi.org/10.1016/j.2ei1.2016.11.003.

Verba, Nandor, Kuo-Ming Chao, Anne James, Jacek Lewandowski, et al. (2017). “Graph
Analysis of Fog Computing Systems for Industry 4.0”. In: e-Business Engineering
(ICEBE), 2017 IEEE 14th International Conference on. IEEE, pp. 46-53.

Verma, Prabal and Sandeep K Sood (2018). “Fog Assisted-IoT Enabled Patient Health
Monitoring in Smart Homes”. In: IEEE Internet of Things Journal.

Verma, S et al. (2016). “An efficient data replication and load balancing technique for
fog computing environment”. In: 2016 3rd International Conference on Computing for
Sustainable Global Development (INDIACom), pp. 2888—-2895.

Vogler, Michael, Johannes M Schleicher, et al. (2015). “DIANE-dynamic IoT application
deployment”. In: Mobile Services (MS), 2015 IEEE International Conference on. IEEE,
pp- 298-305.

Vogler, Michael, Johannes Schleicher, et al. (2016). “Optimizing elastic IoT application
deployments”. In: IEEE Transactions on Services Computing.

Vogler, Michael et al. (2016). “A scalable framework for provisioning large-scale IoT
deployments”. In: ACM Transactions on Internet Technology (TOIT) 16.2, p. 11.

Voutyras, Orfefs et al. (2015). “Social monitoring and social analysis in internet of things
virtual networks”. In: Intelligence in Next Generation Networks (ICIN), 2015 18th Inter-
national Conference on. IEEE, pp. 244-251.

https://doi.org/10.23919/INM.2017.7987464
https://doi.org/10.1109/TII.2014.2306397
https://doi.org/10.1109/ACCESS.2016.2619360
https://doi.org/http://dx.doi.org/10.1016/j.aei.2016.11.003

References 153

Wang, Congjie et al. (2017). “Optimizing Multi-Cloud CDN Deployment and Scheduling
Strategies Using Big Data Analysis”. In: 2017 IEEE International Conference on Services
Computing (SCC), pp. 273-280. DOI1: 10.1109/SCC.2017.42. URL: http://ieeexplore.ieee.
org/document/8034995/.

Wang, Lihui, Martin Torngren, and Mauro Onori (2015). “Current status and advancement
of cyber-physical systems in manufacturing”. In: Journal of Manufacturing Systems 37,
Part 2, pp. 517-527. DOI: http://dx.doi.org/10.1016/j.jmsy.2015.04.008.

Wang, Nan et al. (2017). “ENORM: A Framework For Edge NOde Resource Management”.
In: IEEE Transactions on Services Computing X.JANUARY, pp. 1-14. 1SSN: 19391374.
DOI: 10.1109/TSC.2017.2753775. arXiv: 1709.04061.

Wiesner, Stefan, Eugenia Marilungo, and Klaus-Dieter Thoben (2017). “Cyber-Physical
Product-Service Systems: Challenges for Requirements Engineering (Mini Special Issue
on Smart Manufacturing)”. In: International journal of automation technology 11.1,
pp- 17-28.

Wolpert, David H and William G Macready (1997). “No free lunch theorems for optimiza-
tion”. In: IEEE transactions on evolutionary computation 1.1, pp. 67-82.

Wu, Xiaonian et al. (2013). “A Task Scheduling Algorithm based on QoS-Driven in Cloud
Computing”. In: Procedia Computer Science 17, pp. 1162—-1169. DOI: http://dx.doi.org/
10.1016/j.procs.2013.05.148.

Xu, Rui and Donald Wunsch (2005). “Survey of clustering algorithms”. In: IEEE Transac-
tions on neural networks 16.3, pp. 645-678.

Zeng, Deze, Lin Gu, Song Guo, et al. (2016). “Joint optimization of task scheduling and
image placement in fog computing supported software-defined embedded system”. In:
IEEFE Transactions on Computers 65.12, pp. 3702-3712.

Zeng, Deze, Lin Gu, and Hong Yao (2018). “Towards energy efficient service composition in
green energy powered Cyber-Physical Fog Systems”. In: Future Generation Computer
Systems, pp. 1-9. 1SSN: 0167739X. por1: 10.1016/j.future.2018.01.060. URL: https:
//doi.org/10.1016/j.future.2018.01.060.

Zhan, Zhi-Hui et al. (2015). “Cloud Computing Resource Scheduling and a Survey of
Its Evolutionary Approaches”. In: ACM Comput. Surv. 47.4, pp. 1-33. DOI: 10.1145/
2788397.

Zhang, Yin et al. (2017). “Health-CPS: Healthcare cyber-physical system assisted by cloud
and big data”. In: IEEE Systems Journal 11.1, pp. 88-95.

Zhao, Jia et al. (2013). “A Location Selection Policy of Live Virtual Machine Migration for
Power Saving and Load Balancing”. In: The Scientific World Journal 2013, p. 16. DOT:
10.1155/2013/492615.

https://doi.org/10.1109/SCC.2017.42
http://ieeexplore.ieee.org/document/8034995/
http://ieeexplore.ieee.org/document/8034995/
https://doi.org/http://dx.doi.org/10.1016/j.jmsy.2015.04.008
https://doi.org/10.1109/TSC.2017.2753775
http://arxiv.org/abs/1709.04061
https://doi.org/http://dx.doi.org/10.1016/j.procs.2013.05.148
https://doi.org/http://dx.doi.org/10.1016/j.procs.2013.05.148
https://doi.org/10.1016/j.future.2018.01.060
https://doi.org/10.1016/j.future.2018.01.060
https://doi.org/10.1016/j.future.2018.01.060
https://doi.org/10.1145/2788397
https://doi.org/10.1145/2788397
https://doi.org/10.1155/2013/492615

Appendix A

VisJs Visualisation Platform

What to Show
Directory: Random :Lfile: Test.json -

Gateways Resources

Clusters: IE' IEI IEI |E|

@ Add Node @ Add Edge @ Edit Node (5? Delete selected
App Select Event:
- {
= : : Q "Type'": "Testing Appl",
== s "Load": 5.287942,
Q y/ - o "Utility": 2.7882729,
J | L W, "Constraints": {
e o 0=
.'h_? o =
4‘:/ ‘) "Reliability": 0,
; =8 g
o o Eﬂ = 9 o "Delay": 9999
ﬂn) - 5
- uq a é b - "-_? ::Tot?Ll\lngount": 8.02298,
B 0 o = e {0 el - { = UWeights": {
e = T e - - SN W R
Y ' * e T L ,- TR ~ig "Constraints": 1,
.nb [———] * ! ‘ . . " P
0 PR i} T i JA -ﬁ = Reliability": 1,
z T - o
_g___ . ' "Delay": 1
= 9 \
‘ S e— v 1,
a = ;?"" PN o= "Delays': 43.187492,
= . T — o "Reliability": 0.42310324,
o = .o =0 s e "ConstViolations": 0,
o T— = ao "Name'": "TestAppC2_Count2"
== - _ .
e, © "UnitLoad": 0.4 }
con %o

Fig. A.1 VisJs Platform

156 VisJs Visualisation Platform

Fig. A.2 Initial Generated Fog

Vis.js dynamic browser library was modified to be able to view Fog Deployments together
with application, gateway and resource parameters. This was used to see how certain methods
perform and to have an overview of the system.

The modified platform can be seen in Fig. A.1 where the user can select directories
and files from the hdfs clous storage system which can be used by the Spark cluster to save
outputs as well. The users can select clusters to view and also to remove Gateways and
Resources for faster loading. By clicking on entities they can view information on them.

The downside of the platform is that above 100 application loading the system is slow
and details of it are hard to view.

The Fig. A.2 shows the generated Multi-Components fog scenarios for an application
size of 80. The results is Fig. A.3 shows the results of the distance based clustering and
deployment while the results in Fig. A.4 shows the results of the Sampling and Weights based
methods results. It is worth noting that as the Vis.Js platform shows connection between

components the clustering made by the first method seems to make sense on the platform

157

=== =

Fig. A.3 Results of Distance Deployment

while the one done by the second one seems random, but as seen from the tests has better

results.

158 VisJs Visualisation Platform

[T AT e

- = ==

o _

— =

Fig. A.4 Results of Sampling and Weights Clustering Deployment

Appendix B

Code Snippets

This Appendix aims to show some of the main code snippets from the platform with com-
ponents from the drivers, load and testing applications as well as parts from the monitoring
drivers and from the java testing platform that was developed. The origin of the code is
reflected in the title of the included sections.

The whole code for the drivers, the deployments and main components can be found at
the GitHub Directory github.com/nandor1992/FogOfThings, where the Gateway components
and Drivers can be found under the master branch and the optimization tests can be found
under the JavaUpdates branch. This sections aims to highlight some of the more important
components.

A sample of the Sampling and Weighted Clustering method can be seen in Fig. B.1. A
portion of the testing application can be seen in Fig. B.2. The main section of the AMQP to
Karaf Event Admin broker are presented in Fig. B.3 and a part of the BLuetooth Driver can
be seen in Fig. B.4.

https://github.com/nandor1992/FogOfThings

160 Code Snippets

D:\Doktori\Thesis\Thesis Draff lustering.java Wednesday, August 22, 2018 10:18 AM
public static Map<Integer, Integer> SampleWeDiCOptimization(Fog f) {
f.clearAppToGws();
//Sampling
float sampleProc = (float)0.2;
int minSampleSize = getMinPts(f)*3;
//Clustering
int minPts = getMinPts(f);
//Res Share
int maxShare = 2;
double shareThreshold = (float) 0.3;
//GA
int size = getMinPtsSize(minPts,f.getScenario());
int count = getMinPtsCount(minPts,f.getScenario());
//Time start
long startlni = System.currentTimeMillisQ);
dataG.addTime((float)(System.currentTimeMil
dataG.addUtility((float)0.0);
WeightedCls cls = new WeightedCIs(f);
Map<Integer, Integer> bestSolution = new HashMap<>();
Double bestUtil = 0.0;
cls.initTrain(10,2);
//Random Population Initialization using Initial Weights
List<Map<Integer, Integer>> bests =
iterSampleClustGA(F,cls,getMinPtsCount((int)sampleProc*f_getApps().size(),f.getScenario()),getMinPtsSize((int)samplePro
c*f.getApps().size(),f.getScenario()),sampleProc,minSampleSize);
dataG.addTime((float) (System.currentTimeMillis()-startlni)/(float)1000.0);
dataG.addUtility((float)0.0);
if (bests == null){ System.out.printIn(’Initial Random Clustering Failed!");return null;}
bestUtil = getPartialUtility(f,bests.get(0)).doublevalue();
bestSolution = bests.get(0);
System.out.printin(Sampling Best Util:"+bestUtil+" with solution: “+bestSolution);
cls._getWeight().attemptResult(bestUtil.floatvalue());
System.out.printIn("Sampling Finished in :"+((System.currentTimeMillis()-startlni)/1000.0));

is(Q)-startlni)/(float)1000.0);

dataG.addTime((float)(System.currentTimeMillis()-startini)/(float)1000.0);
dataG.addutility((float)0.0);

//1terative Solution

Map<Integer, Integer> best = lterWeDiCompOpt
bestSolution,startin
//Final Write Out
return best

ization(f, cls, bests, minPts, maxShare, shareThreshold, bestUtil,

b

//iterSampleClustGA
public List<Map<Integer, Integer>> sampleFogAttempt(){
//1Initial Attempt
List<Map<Integer, Integer>> ret = attemptRandInstance();
while (ret == null && failCnt<maxFailCnt){
//First Attempt failed do di ive util size < min then do min while solution is found and if none is found escape
System.out.printin(Q);
System.out.printin(’----- Failed Attempt with clsSize: "+clsSize+" and Weights:" +appWeights+" - "+gwWeights+"
FailCnt: "+failCnt);
if (clsSize==minSize){
failCnt++;

this.modifyWeights(l.0-(1.0/(double)(?*maxFailCnt+1)*(double)failCnt),1.0+(1.0/(double)(?*maxFailCnt+1)*(double
)failCnt));

if (clsSize/2<=minSize){clsSize=minSize;}else{clsSize=clsSize/2;}
ret = attemptRandinstance();
3
List<Map<Integer, Integer>> tmpRet = ret;
int refClsSize = clsSize;
while (clsSize nt) (F.getApps().size()*proc) && failCnt<maxFailCnt){
//Grow Until Clusterin can be done
if (tmpRet!=nul){
ret=tmpRet;
refClsSize = clsSize;
System.out.printIn(’----—- Successfull Attempt with clsSize: "+clsSize);
this. interpretWeights(ret);
if (failcnt>1){

this.modifyWeights(l.0-(1.0/(double)(?*maxFailCnt+1)*(double)failCnt),1 . 0+(1.0/(double)(?*maxFailCnt+1)*(do
uble)failcnt));}

0<{
2.0-failCnt/maxFailCnt;}
if (clIsSize*multi>(int)(f.getApps() -size()*proc)){clsSize=(int) (f.getApps().size()*proc);}

1-

161

D:\Doktori\Thesis\Thesis Di i i |ustering.java ‘Wednesday, August 22, 2018 10:18 AM
else{clsSize=(int)(clsSize*multi);}
System.out.p tIn('Cls Size: "+clsSize+" Max Fail: "+maxFailCnt+" FailCnt: "+failCnt+" and
+appWeights+" - "+gwWeights);
tmpRet = attemptinstance();
Yelse{
System.out.printin(Q);
System.out.printIn(’'----- Failed Attempt with clsSize: "+clsSize+" FailCnt: "+failCnt);
FailCnt++;
clsSize=(int) (clsSize*(1.0-1/(double)maxFailCnt));
if (clsSize<=refClsSize){break;}
System.out.printIn('Cls Size: "+clsSize+" Max Fail: "+maxFailCnt+" FailCnt: "+failCnt+" and W
+appWeights+" - "+gwWeights);

ights:"

this.modifyWeights(l.0-(1.0/(double)(?*maxFailCnt+1)*(double)failCnt),1. 0+(1.0/(double)(?*maxFailCnt+1)*(double
dfailcCnt));
tmpRet = attemptlinstance();
b
3
return ret;

3

public static List<Map<Integer, Integer>> lterWeDiCompOptimization(Fog f, WeightedCls cls,
List<Map<Integer, Integer>> bests, int minPts, int maxShare, double shareThreshold,
Double bestUtil, Map<integer, Integer> bestSolution,long startlni) {
Map<String, Float> prog = new HashMap<String, Float>();
boolean nextStep = true;
//cls_getWeight().showData();
// Loop here while Weighting Algorithm knows what to do next
while (cls.getWeight().getNextStep()) {
long start = System.currentTimeMillisQ;
dataG.addutility(bestUtil.floatvalue());
dataG.addTime((float) (System.currentTimeMillis()-startini)/(float)1000.0);
// Put values to the new weights Calculation
weightsCorrBasedTraining(cls, bests);
dataG.addWeightApp(cls.getWeight().appWeights());
dataG.addWeightGw(cls.getWeight().gwWeights());
System.out.printIn('Clustering Parameters: " + cls.getWeight().getChar() + " —————————-)3
cls.getWeight() .showWeightsQ;
// Try Clustering based on given weights If all eps failes then weights fail
if (WeightedClustering(f, cls, minPts)) {
dataG.addUtility(bestUtil.floatvalue());
dataG.addTime((float)(System.currentTimeMillis()-startini)/(float)1000.0);
weightedResourceAlloc(f, cls, maxShare, shareThreshold);
dataG.addUtility(bestUtil.floatvalue());
dataG.addTime((float)(System.currentTimeM isQ-startlini)/(float)1000.0);
// Do weighted Resource Allocation based algorithm; Do Local GA, if Any fail then the method fails
List<Map<Integer, Integer>> tmpbests = Methods.GAClus(f, true,dataG);
if (tmpbests == null) {
System.out.printIn('Direction Clustering Failed!™);
cls._getWeight().setGwFailed();
dataG.addutility(bestUtil.floatvalue());
dataG.addTime((float) (System.currentTimeMi
} else {
System.out.printIn(Direction Clustering Done in :" + ((System.currentTimeMillis() - start) / 1000.0));
bests = tmpbests;
prog.put('Clust[” + cls.getWeight().getChar() + " Time: "
+ ((System.currentTimeMillis() - start) / 1000.0) + "]",
getUtility(f, bests.get(0))):
if (getUtility(f, bests.get(0)) > bestUtil) {
bestUtil = getUtility(f, bests.get(0)).doublevalue();
bestSolution = bests.get(0);
dataG.setBestWeight(dataG.getCurrent());
dataG.setBestCluster(f.retreiveCluster());

s()-startlni)/(float)1000.0);

s

dataG.adduti lity(bestUtil.floatvalue());

dataG.addTime((float) (System.currentTimeMi s -startlni)/(float)1000.0);
cls.getWeight().attemptResult(getUtility(f, bests.get(0)));

3
} else {
System.out.printIn("Direction Clustering Failed!");
cls._getWeight() -setAppFailed();
b
3
System.out._printIn('Results: ");
SortedSet<String> intkeys = new TreeSet<>(prog.keySet());
for (String name : intKeys) {System.out.printin(name + " = " + prog.get(name));}
return bests

Fig. B.1 Sampling and Weights Algorithm Snippet

162

Code Snippets

D:\Doktori\Thesis\Thesis Draft\Appendix\TestingApp java Wednesday, August 22, 2018 10:03 AM

private static void sendEvent(String proc_time,String start) {

3

Thread.currentThread() .setName(name) ;

Dictionary props = new Hashtable();

props.put(‘app’”, name);

props.put(“payload”,"{"proc_time":"+proc_time+", “start_time":"+start+}"");
props.put(‘‘device”,device);

Event event = new Event(regs.get(0), props);

ea.sendEvent(event);

@Override
public void updated(Dictionary properties) throws ConfigurationException {

b

logger.warn("App Updated™);
device = properties.get(“'device’™).toString()-trimQ;
load = Integer.parselnt(properties.get(load”).toStringQ-trimQ);
if (sr2t=null){
sr2.unregister();
3
Dictionary dic = new Hashtable();
dic.put(EventConstants.EVENT_TOPIC, regs.get(l)+device);
sr2 = bcontext.registerService(EventHandler.class.getName(), this, dic);

@0verride
public void handleEvent(Event event) {

b

Thread.currentThread() .setName(name) ;

String start = event.getProperty(“payload™).toString(Q;
//Do Load Then Respond

long timeBefore = System.nanoTime();
11.doMatrice(load);

I11.doFiltering(load);

11.doFlops(load);

long timeAfter = System.nanoTime();

long elapsed_time = timeAfter - timeBefore;
//Respond

sendEvent(String.valueOf(elapsed_time/), start);

public class Load {
public void doMatrice(int qty){

b

for(int i=0;i<qty;i++){
int m1[];
int m2[1[];
int tmp[1[1;
ml=randMatrice();
m2=randMatrice();
tmp=addMatrice(ml, m2);
tmp=multMatrice(ml, m2);
b

public int[J[] randMatrice(Q){

int mi[]0]1;

Random rand = new Random();
ml=new int[20][20];

for (int i++){

for (int j 30{
mi[i][J] = rand.nextInt(200);
}
3
return mi;

3
public int[]J[] addvatrice(int[1[] a, int[][] b)

{

int ret[1[1;
ret=new int[20][20];
for (int <205i++H){
for (int j=0;3<20;j++){
ret[il0]=alil01+p[i107;

}
3

return ret;

3
public int[J[] multMatrice(int[][] a, int[][] b)

{

int ret[1[1;
ret=new int[20][20];
for (int i

163

D:\Doktori\Thesis\Thesis Draft\Appendix\TestingApp.java Wednesday, August 22, 2018 10:03 AM
For (int k=0;k<20;k++)

ret[i]0]=ret[i1Li1+ali1[k1+b[KILi1;

bs
ks
return ret;
3
public void displayMatrice(int[][] a)
{

System.out._printIn('Displaying Matrice™);
for (int i+){
for (int j=0;3<20;j++){
System.out.print(a[i]lj]1+"

}
System.out.printinQ);

public void doFiltering(int qty){
For(int i=0;i<qty;i++){

int data[];
int minmax[]=new int[2];
data=randData();
float sma[]=smaData(data);
float avg=avgData(data);
minmax=minmaxData(data);
sortData(data, true);
sortData(data, false);

b

public int[] sortData(int data[],boolean type){
int tmp=0;
for (int i=0;i<99;i++)

{

for (int j=i;j<100;j++)

it (I(data[i]>data[j] " type)){
tmp=data[j];
data[j]=data[i];
data[i]=tmp;
}

return data;

public float avgData(int data[]){

for (int i=0;i<100;i++){
avg=avg+data[i]/100;

bs

return avg;

b
publ

int[] minmaxData(int data[]){

int ext[]=new int[~];

ext[0]=data[0];

ext[1]=data[0];

for (int i=1;i<100;i++){

if (data[i]<ext[0]){
ext[0]=data[i];

3
if (data[i]>ext[1]){
ext[1]=data[i];
b
b

return ext;

3

public float[] smaData(int data[]){
///Simple moving average
float sma[] = new float[100];
float sma_tmp=0;
int curr=4;
//Length of sma =5;
for (int i=0;i<5;i++)
{

sma_tmp=sma_tmp+data[i];

by

sma_tmp=sma_tmp/5;

164 Code Snippets

D:\Doktori\Thesis\Thesis Draft\Appendix\TestingApp java ‘Wednesday, August 22, 2018 10:03 AM
sma[4]=sma_tmp;
sma[0]=sma_tmp;
sma[1]=sma_tmp;
sma[2]=sma_tmp;
sma[3]=sma_tmp;
while (curr<99){
sma_tmp=sma_tmp-(data[curr-4]/5)+(dataf[curr+1]/5);
sma[curr]=sma_tmp;
curr++;

3
sma[99]=sma_tmp;
return sma;
3
public int[] randDataQ{
int data[];
Random rand = new Random();
data=new int[100];
for (int i=0;i< i)

data[i]=rand.nextInt()

return data;
b
public void printData(int data[]){
System.out.printIn("Printing Data™);
for (int i=0;i< i+H){
System.out.print(data[i]+

)
3
System.out.printinQ);

b

public void printData(float data[]){
System.out.printIn("Printing Data™);
int len=data.length;
for (int i=0;ji<len;i++){

System_out.print(String.format('%5.4f",data[i])+" ");

3
System.out.printinQ);

by

public void doFlops(int qty){
for(int i=0ji<qty;i++){
float di[];
float d2[];
dl=randFloat();
d2=randFloat();
float ret[][]=doFloatOps(dl, d2);

3
3
public float[][] doFloatOps(float[] di1,float[] d2)
{

float ret[][]=new float[4][1;
for (int i=0; i< i+ {
ret[0][i]=d1[i]+d2[i];

ret[2][i]1=d1[i]1/d2[i];
H

return ret;

3

public float[] randFloat(){
float data[];
Random rand = new Random();
data=new float[1;
for (int i=0;i< Ji+)

data[i]=rand.nextFloat();

return data;

Fig. B.2 Testing App and Load generator Snippet

165

D:\Doktori\Thesis\Thesis Draft\Appendix\Event Broker java Wednesday, August 22, 2018 10:04 AM
ConnectionFactory factory = new ConnectionFactory();
factory.setUsername('admin’);
factory.setVirtualHost('test™);
factory.setHost("localhost™);
factory.setPort(’H
try {
connection = factory.newConnection();
channel = connection.createChannel();
channel .basicQos(1);

} catch (10Exception el) {
el._printStackTrace();

3
Consumer consumer = new DefaultConsumer(channel) {
@Override
public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties,
byte[] body) throws I10Exception {
String message = new String(body, "UTF-8");
Map<String, Object> headers = properties.getHeaders();
// display time and date using toString(Q)
try {
sendEvent(message, headers);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e._printStackTrace();
3
channel .basicAck(envelope.getDeliveryTag(), false);
}
s
try {
channel .basicConsume (QUEUE_NAME, false, consumer);
} catch (l10Exception e) {
// TODO Auto-generated catch block
e.printStackTrace(Q);
b
b
private void sendEvent(String message, Map<String, Object> headers) throws InterruptedException {
Dictionary props = new Hashtable();
for (Map.Entry<String, Object> header : headers.entrySet()) {
props.put(header.getkey(), header.getvValue());

props.put(‘payload”, message);
it (props.get(device™)!=null) {
Event event = new Event(DEVICE_QUEUE + props.get('device™), props);
ea.sendEvent(event);
Yelse if (props.get('cloud™)=null) {
Event event = new Event(CLOUD_QUEUE + props.get(app’), props);
ea.sendEvent(event);
Yelse if (props.get('region™)=null) {
Event event = new Event(REGION_QUEUE + props.get(‘'app™), props);
ea.sendEvent(event);
Yelse if (props.get(res™)I=null) {
Event event = new Event(RESOURCE_QUEUE + props.get(‘app’), props);
ea.sendEvent(event);
Yelse if (props.get(app™)!=null){
if (props.get(“app_type)!=null && props.get(“app_rec”
if (props.get(app_type™).toString().equals(receive™)){
String app=props.get(“app_rec™).toString();
props.remove('app_type™);
props.remove('app_rec');
Event event = new Event(APP_REC_QUEUE + app, props);
ea.sendEvent(event);
Yelse if (props.get(app_type'™).toString().equals('send™)) {
String app=props.get(app_rec’™).toStringQ;
props.remove('app_type’);
props.remove(app_rec™);
Event event = new Event(APP_SEND_QUEUE + app, props);
ea.sendEvent(event);

Fig. B.3 AMQP to Event Admin Broker Snippet

166

Code Snippets

D:\Doktori\Thesis\Thesis Draft\Appendix\DriverCodeSnippets py

Wednesday, August 22, 2018 10:09 AM

class blue(Daemon):
class BlueThread(threading.Thread):

def transLoop(self,socket,send_qg,receive_q):
message=""";
while not exitFlag:
if not send_qg.empty():
data = send_g.get()
logging.debug(*'Sending: " +data)
socket.send(data+"\n")
try:
reading=socket.recv(1024)
if ((len(reading)>0 and reading[0]!=" ")):
message=-message+reading;
if message[-1]=="\n" and message[-2]==
receive_q.put(message)
message=""";
if (len(message)>250):
logging.debug(“Long Message Error™)
logging.debug(len(message))
message=""
except bluetooth.BluetoothError as error:
if error[0] timed out™:
logging.error("Error:",error)
break;
socket.close()

class ServerThread(threading.Thread):

def

def

def

def __init_ (self,server_sock):
threading.Thread.__init__(self)
self.server_sock=server_sock
def run(self):
logging.debug("Started Server Thread™)
port = self.server_sock.getsockname()[1]
logging.debug("Waiting for connection on RFCOMM channel %d™ % port)
self.server_sock.settimeout(2)
while not exitFlag:
try:
client_socket, client_info = self.server_sock.accept()
client_socket.send("x")
addr=client_info[0]
client_socket.settimeout(0.1)
send_q[addr]=Queue.Queue(10)
receive_¢[addr]=Queue.Queue(10)
bluet=blue.BlueThread(addr,client_socket,send_q[addr],receive_qg[addr])
bluet.start()
threads[addr]=bluet
except bluetooth.BluetoothError :
pass
logging.debug(Exiting Server™)
messageResolv(self,my_json):
dev_id=my_json.get("bn")[11:]
dev_id=dev_id[:8]
logging.debug(dev_id)
if (self.dev_list.count(dev_id)!=0):
message_amgp=json.dumps(my_json["
message_amgp=message_amqgp.replace(""",""")
logging.debug(message_amqp)
if dev_id in self.timer_list:
self.timer_list[dev_id].cancel()
properties_m=pika.BasicProperties(headers={"device”:""+dev_id, “comm”:
““+self.gw_name, “datetime” :""+datetime.datetime._now() .strftime(""%Y-%m-%d %H:%M:

self.channel .basic_publish(exchange="device”, routing_key="", body=message_amqp, properties=properties_m)

self_updateDevTime(dev_id, "Available
else:
logging.debug("No details found - not forwarding™)

)

registerResolv(self,key,my_json):
trans=my_json.get("bn",{}H[2]
my_uuid=self_resolv_dev(my_json)

trans=trans[9:]

data="{"bn":[“trans:id:"+trans+"", “urn:dev:id:"+my_uuid+""]}"
self.dev_mac[my_uuid]=key

self.sendRf(my_uuid,data);

resolv_dev(self,my_json):
logging.debug(‘*Json Parts!™)
type_d=my_json.get('bn",{})[0][13:]
mac_d=my_json.get(bn",{}[1]1[12:]

167

D:\Doktori\Thesis\Thesis Draft\Appendix\DriverCodeSnippets.py

Wednesday, August 22, 2018 10:09 AM

ver_d=my_json.get("'ver™)
value=self.datab. lookupDev(mac_d,type_d,ver_d)
if value!=None:
logging.debug(""Found details "+value)
rand_uuid=value
self_updateDevTime(value, Available™)
self.dev_list.append(value)
else:
logging.debug(“"No details found™)
rand_uuid = "".join([random.choice(string.asci
sense=[]
for sens in my_json["e
sense.append({sens[

zsens["u"1})

self._datab.addDevice(rand_uuid, type_d,mac_d,ver_d,datetime.datetime.now() .strftime(%Y-%m-%d

%) S™), "Available”,sense)
self.dev_list._append(rand_uuid)
return rand_uuid

def sendlssgResolv(self,data,header):
logging.debug('—-------- Send Data---------)
logging.debug(data)
dev_id=header.headers.get(“device”)
qos=str(header.headers.get("qos~)).strip(Q)
logging.debug(dev_id)
if (self.dev_list.count(dev_id)!=0):
logging.debug(“Found deta D]
send_json="{"e":"+data+", "bn":"urn:dev:id:"+dev_id+""}"
send_json=send_json.replace("" ",” ')
logging.debug(send_json)
#Start timer here
if (qos!=None):
if (gos=="1"):
t=Timer(5,self.timeout, [dev_id,send_json,0])
self.timer_list[dev_id]=t
t_startQ
self.sendRf(dev_id,send_json)
else:
logging.debug("'Data received for non existent Dev™)

de

-

callback(self,ch,method,properties,body):
self.sendMssgResolv(body,properties)
def sendRf(self,device,message):
key=self.dev_mac[device]
logging.debug(device+"-"+key)
send_g[key] .put(message)
updateDev(self,dev_id,status):

#ToDo update Date of Device
self.datab.updateStat(dev_id,status)
def updateDevTime(self,dev_id,status):
#ToDo update Date of Device

de

-

self.datab.updateDateStat(dev_id,status,datetime.datetime.now().strftime('%

de

-

scan(self):
logging.debug(‘'Scanning timeout')
nearby_devices=bluetooth.discover_devices(lookup_names=True)
logging.debug("found %d devices™ %len(nearby_devices))
for addr,name in nearby_devices:

logging.debug(” %s - %s "% (addr,name))

if name in self_find_devs:

logging.debug(""Attempting '+name+":"+addr+" port: +str(self.port))

try:
socket=bluetooth.BluetoothSocket(bluetooth.RFCOMM)
socket.connect((addr,port))

logging.debug(“Connected to %s on port %s*%(name,port))

#port=port+1

socket.send("x")
socket.settimeout(0.1)
send_q[addr]=Queue.Queue(10)
receive_g[addr]=Queue.Queue(10)

bluet=self.BlueThread(name,socket,send_q[addr],receive_qg[addr])

bluet.start()
threads[addr]=bluet
except bluetooth.BluetoothError as error:
logging.error(error)
if not exitFlag:

mainTimer=Timer(300,self.scan)

self_timer_list["main"]=mainTimer

mainTimer.start(Q)

letters+string.digits) for n in xrange(8)])

Fig. B.4 Bluetooth Driver Snippet

Appendix C

Example Deployment File

The deployment file presented in Fig. C.1 is used to deploy applications and to save run-time
parameters from optimisation tasks. This file shows how the resources, apps, gateways,
clusters and the Fog are saved and what metadata each of them contains and how they are
linked. The file is encoded in JSON and this snippet has sections cut out and removed so
it will fit in a page. Examples of the full deployment files can be seen id the code base
presented in the previous section.

170

Example Deployment File

hesis ix\JSO json

{"Connections": {
wyn.

{"Resources": {},

171y,

"1": 1.21815 .

"2": 1.218151
},"Apps": {

"6": 2.7414336}}},

"date": "Test_javaWed Aug 22 10:31:13 BST 2018",
"nodes": [{

"id": 1,
"label": "TestGwO",
"value": 47,
"group": "server"},{
"color": {
"border": "black",
"background": "Blue"},
"shape": "box",
"label": "TestAppCl_Nrl",
"id": 1,
"value": 18},{
"image": "computer-microprocessor.png",
"shape": "image",

"label":
nign.

"value"

"DeviceLoc_App2GW:3_0",

"Applications": {
"1t {

"Type": "Testing_ App7",

"Load": 18

"Utility":

"Constraints":
"Reliability":
"Delay": 3.4

"TotalMsgCount":

"UWeights": {
"Constraints":
"Reliability":
"Delay": 1.0},

"Delays": 146.47209,

"Reliability": 0.5292551,

"ConstViolations": .0,

"Requirements": [
"Capability C"],
"Name": "TestAppCl _Nrl",
"UnitLoad": 2.8}},
"SystemData": {
"Utility": 7.2170877,
"Reliability": 4.5191536,
"Delay": 11 . ,
"Name": "Test_java"},
"Gateways": {
LR
"LIdle": 3.68,
"Type": "Basic",
"TotLoad": 59.54 .
"TotMsgRate": .33 405,
"Capabilities": [
"Capability F",
"Capability E",
"Capability D",
"Capability C",
"Capability B",
"Capability G",
"Capability A"],
"Resources": {
"3m: {
"Type":
"GatewayName":
"GatewayID": 1,
"MsgRate": .4 67,
"Name": "DeviceLoc_App3GW:1_0"}},
"BaseLoad": 8. ’
"Apps": {

"Device",
"TestGw0",

‘Wednesday, August 22, 2018 10:40 AV

"
"Testing_App7",
"Utility .92834944,
"Constraints": {
"Reliability": 1.4E-45,
"Delay": 3.402823 },
"TotalMsgCount": .752102,
"UWeights": {
"Constraints": 0.0,
"Reliability": 0.33,
"Delay": 1.0},
"Delays": 146.47209,
"Reliability": 0.5292551,
"ConstViolations": 0.0,
"Requirements": [
"Capability C"],
"Name": "TestAppCl_Nrl",
"UnitLoad": 2.8}},
"Name": "TestGwO",
"PerfCoef": .9445816}},
"Latencies": {
"1t {
"on: ,
"3 4 L7 s
"Clusters": {
"1t {
"Utility": 15,
"Gateways": {
"1t |
"Load": 1052,
"Share": 96. 2
"Name": "TestGw0O"}},
"Reliability": 4.037528,
"ConstViolations": 4.0,
"Apps": {

"edges":

"TestAppCl_Nrl",
"TestAppCl_Nr2"},

"Delay": 36.3937,
"Name": "Cluster_1"}},
[
"color": {
"color": "Blue"},
"from":
"to": 111,

"Resources": {

nyw.

"type":
"Name" :

{
"Typen:

"GatewayName" :

"Device",
"TestGw2",

"GatewayID": 3,

"MsgRate":

"Name" :

"DeviceLoc_App2GW:3_0"}},

"virtual",

"Test java"}

Fig. C.1 Example JSON Deployment File Snippet

Appendix D

Physical Backbone of the System

The physical backbone of the system supported all the tests and message management for

the physical tests as well as provided the computational backbone for the Method Evaluation

tests.The setup of the physical cluster that was used to support this can be seen in Fig. D.1.

The software stack that was deployed to run the openstack cloud, spark cluster and other

components can be seen in Fig. D.2. The Spark deployment can be seen in Fig. D.3. The

devices that were used for testing and deployment can be seen in Fig. D.4.

Maas Control Mode
DHCP - DNS Server

-

192.168.72.66
Router (TpLink) - 192.168.0.1

Public/Management Network 192.168.0.0/24 - Maas Network

192.168.0.2

Dell Xps 8700 Dell Xps 8500 Hp 2210 Dell Xps 8700
Heavy-SpongeMaas Bony-Boys.Maas Bland-Attraction.Maas Bitter-Picture Maas
192,168.0,50 192.168.0.51 192.168.0,52 192168053

Fig. D.1 Physical Cluster

172 Physical Backbone of the System

HDFS Components Openstack Components

Juju Bootsrap and Mangement Layer

Maa$ Provisioning and Control Layer (Hypervisor)

\WEEH Deployed L Deployed
Controller Node Node

Maas Ul

‘ Juju-Core

‘ Openstack Client

Fig. D.2 Software Stack

spoﬂ:z ,., Spark Master at spark://10.0.0.135:7077

URL: spark://10.0.0.135:7077

REST URL: spark://10.0.0.135:6066 (cluster mode)
Alive Workers: 5

Cores in use: 20 Total, 0 Used

Memory in use: 34.0 GB Total, 0.0 B Used
Applications: 0 Running, 193 Completed
Drivers: 0 Running, 188 Completed

Status: ALIVE

Workers
Worker Id Address State Cores Memory
worker-20180310132950-10.0.0.145-40384 10.0.0.145:40384 ALIVE 4 (0Used) 6.8GB (0.0B Used)
worker-20180310133016-10.0.0.147-46506 10.0.0.147:46506 ALIVE 4 (0Used) 6.8GB (0.0B Used)
worker-20180723163904-10.0.0.158-43775 10.0.0.158:43775 ALIVE 4 (0Used) 6.8GB (0.0B Used)
worker-20180723163932-10.0.0.159-37268 10.0.0.159:37268 ALIVE 4 (0Used) 6.8GB (0.0B Used)
worker-20180723164538-10.0.0.160-41945 10.0.0.160:41945 ALIVE 4 (0Used) 6.8GB (0.0B Used)

Fig. D.3 Spark Deployment

The Devices from Fig. D.4 a,b,c and g are Raspberry pi 2 System on Chip Fog Nodes
that have attached varying sensor that allow them to interact with their surroundings. Device
a. has a relay, a temperature and humidity sensor and an RF24 wireless transmitter for
communicating with peripheral devices. The Raspberry pi from b. is designed to be used

with video surveillance, as it has attached a motion sensor and a Video Camera. The device c.

173

has attached the temperature and humidity controller together with the RF24 module as well
as a proximity sensor. The node in g. is designed to be a communication hub, as it can send
and receive messages in all the testes technologies and has a higher range RF24 device. The
device d. is a standard RF52 Thingy node that has a varying set of environmental sensors and
communication devices but is used to tests the Low-Power Bluetooth connections with the
Raspberry Pi. The XBee enabled Arduino board from e. has a light and temperature sensor
for environmental monitoring attached to it. The AtTiny device from f. is designed to be a

simple 3.3Volt powered monitoring device.

Fig. D.4 Physical Devices and Nodes

Appendix E

Optimisation Run-time Log Example

A snippet of the output log from the performance validation tests can be seen in Fig. E.1.
Here the main section of the tests are shown with the iterations excluded as they take up too
much space.These exclusions are marked by ... in the text and could mean missing repeated
lines or method iterations.

This tests contains the outputs of all 5 methods and the initial generations as well. The
results are for a 320 application deployment for the Delay scenario, but might not be the one
presented in the evaluation section.

176 Optimisation Run-time Log Example

D:\Doktori\Thesis\Thesis Draft\Appendix\Log.txt Wednesday, August 22, 2018 12:26 PM
%Driver Log : stdout log page for driver-20180814133134-0275

Args:[Perf] Size:2 sceType:1 meType:0

Starting Performance Test.

Parameters - AppCount: 320 Gw Count"s Ext: 0.1 Load: 60.0 Latency: 8.97,30.897Ext Lat: 37.37,87.89 Fog Type: Delay
Tot Res Required Count: 5883.5796 Gw Count: 117 ResProvided: 13461.3955 at Rate: 2.28796 App Cnt: 320 Utility: 808.73474

GA Global GwCount:117 AppCnt:320 Size:72 Gens:1070
The best of the Population 340 is: 800.79224 At: 960.172

The best of the Population 5275 is: 822.05914 At: 12142.278
Best of 6398 Population was at: 5328 is: 822.14844 At: 14838.124

- B. Distance Clustering Deployment -----

- Clustering -----
Cluster 1 Apps: [130, ... 110]
Cluster 2 Apps: [128, ... 255]
Cluster 3 Apps: [256, ... 254]
Cluster 4 Apps: [129, ... 250]

-> GA Cluster 1 GwCount:55 AppCnt:80 Size:54 Gens:550
Ga Failed at pop 5000 !
{130=12, 4=11, 5=96, 133=24, ... 110=36}
GW: 12 Load: 74.59566 MaxLoad: 47.067543

GW: 96 Load: 112.97151 MaxLoad: 39.856384
Final Resp:0

Utility:205.68835

Distance Clustering Failed

-> SampleClustering
-> GA Cluster 1 GwCount:13 AppCnt:59 Size:52 Gens:126
The best of the Population 1205 is: 131.76009
Sample Clustering finished in :111.284
Sampling Best Ut 131.76007080078125 with solution: {4=107, 132=110, ... 124=113, 253=112}
Sampling Finished in :111.293

New Iteration of Training Algorithm Started

Apps Correlations: {Constraints=0.0, RequirementSim=0.009922318063188777, ResourceShare=0.036468574365358955,
UtilityWeights=0.0, MessageRate=-0.007976248954193159, Distance=-0.003333345863698447, UnitLoad=0.0245391019084894963}
Gws Correlations: {Capabilities=0.0, SharedRes=0.010033092253716744, PerfToULoad=0.12285470794435353,
BaselLoad=-0.03805291556295542, CapToULoad=0.07774400188732135}

-> Sorting Correlation Results - Not Dir Stop -
Clustering Parameters: Count:1 FailSteps:0 ProcLim[app/gw]:0.2/0.05 App-Penalties:{} Gw-Penalties:{} ----------
Weight Apps:{RequirementSim=0.12574820000702708, ResourceShare=0.4621760312521691, MessageRate=-0.10108514385552601,
UnitLoad=0.3109906248852778}Weight Gws:{SharedRes=0.040344627320059334, PerfToULoad=0.49401792400478906,
Baseload=-0.15301670292729525, CapToULoad=0.31262074574785637}

-> Clustering

Eps Vals:[-0.06666663905476547, 0.4672202900299937, 0.05338869290847592]

Eps Search Results - Best Eps:0.2536655 BestValid: 12.25
Cluster 1 Size:42 Apps: [320, ... 187]

Cluster 8 Size:21 Apps: [128, ... 157]
Unallocated Apps: []

-> GA Cluster 1 GwCount:27 AppCnt:42 Size:51 Gens:467
The best of the Population 1968 is: 110.29555

-> GA Cluster 8 GwCount:15 AppCnt:21 Size:49 Gens:422
The best of the Population 1534 is: 54.396114

Fog Utility: 820.6405

Direction Clustering Done in :873.417

New lIteration of Training Algorithm Started

Apps Correlations: {Constraints=0.0, RequirementSim=-0.005347581101487097, ResourceShare=0.0020892691508377077,
UtilityWeights=0.0, MessageRate=0.0024588056933909507, Distance=-0.01297322160741293, UnitLoad=0.0033775152902921135}
Gws Correlations: {Capabilities=0.0, SharedRes=0.016669262544068475, PerfToULoad=-0.018756340143875377,
BaseLoad=-0.0030906981605134613, CapToULoad=-0.01379416814175487}

-> Sorting Correlation Results - Not Dir Stop -
Clustering Parameters: Count:2 FailSteps:0 ProcLim[app/gw]:0.2/0.05 App-Penalties:{} Gw-Penalties:{} --—--———-—-
Weight Apps:{RequirementSim=-0.24645141165717063, Distance=-0.5978906571419933, UnitlLoad=0.1556579312008361}Weight

1-

177

D:\Doktori\Thesis\Thesis Draft\Appendix\Log.txt Wednesday, August 22, 2018 12:26 PM

Gws:{SharedRes=0.3186601624081684, PerfToULoad=-0.358558057420301, BaselLoad=-0.059083740218268004,
CapToULoad=-0.26369803995326246}

-> Clustering

Eps Vals:[-2.6224482468731116, -2.220446049250313E-16, 0.26224482468731114]

Eps Search Results - Best Eps:-1.3112241 BestValid: 4.777777777777778

Cluster 1 Size:24 Apps: [1, ... 249]

Cluster 12 Size:26 Apps: [257, 194, 258, 136, 200, 138, 267, 81, 275, 84, 212, 21, 152, 153, 154, 219, 284, 286, 225, 103,
296, 169, 299, 51, 311, 313]
Unallocated Apps: []
-> GA Cluster 1 GwCount:9 AppCnt:24 Size:49 Gens:428
The best of the Population 843 is: 63.25459

-> GA Cluster 12 GwCount:10 AppCnt:26 Size:49 Gens:433
The best of the Population 494 is: 67.35516

Fog Utility: 826.7943

Direction Clustering Done in :1144.421

New Iteration of Training Algorithm Started

Apps Correlations: {Constraints=0.0, RequirementSim=5.459132045650533E-4, ResourceShare=0.04517603949826375,
UtilityWeights=0.0, MessageRate=-3.9374402624911135E-4, Distance=-0.03531882268272359, UnitlLoad=-4.510048126500031E-4}
Gws Correlations: {Capabilities=0.0, SharedRes=0.02152665962796101, PerfToULoad=-0.0198794274493012,
BaselLoad=-6.088063042454969E-4, CapToULoad=-0.019385437365909697}

-> Sorting Correlation Results - Dir Stop - - Worse Util
Underfitted App Solution, Solving...
Underfitted Gw Solution, Solving...
Clustering Parameters: Count:7 FailSteps:2 ProcLim[app/gw]:0.6773759999999999/0.16934399999999997 App-Penalties:{}
Gw-Penalties:{} ---—--—----—-
Weight Apps:{ResourceShare=1.0}Weight Gws:{SharedRes=0.25765659901443466, PerfToULoad=-0.39478359619918335,
CapToULoad=-0.3475598047863821}

-> Clustering

Eps Vals:[-0.1, 0.21000000000000002, 0.031000000000000007]

Eps Search Results - Best Eps:-0.069000006 BestvValid: 45.5
Cluster 1 S 1162 Apps: [256,
Cluster 4 Size:30 Apps: [194,
Unallocated Apps: []

-> GA Cluster 1 GwCount:57 AppCnt:162 Size:60 Gens:728
The best of the Population 3676 is: 416.03424

-> GA Cluster 4 GwCount:11 AppCnt:30 Size:50 Gens:441
The best of the Population 605 is: 77.55198

Fog Utility: 825.8747

Direction Clustering Done in :2406.059

Results:
Clust[Count:1 FailSteps:0 ProcLim[app/gw]:0.2/0.05 App-Penalties:{} Gw-Penalties:{} Time: 873.417] = 820.6405
Clust[Count:2 FailSteps:0 ProcLim[app/gw]:0.2/0.05 App-Penalties:{} Gw-Penalties:{} Time: 1144.421] = 826.7943
Clust[Count:3 FailSteps:1 ProcLim[app/gw]:0.24/0.06 App-Penalties:{} Gw-Penalties:{} Time: 1912.109] = 827.0376
Clust[Count:4 FailSteps:1 ProcLim[app/gw]:0.288/0.072 App-Penalties:{} Gw-Penalties:{} Time: 1248.964] = 825.09515
Clust[Count:5 FailSteps:2 ProcLim[app/gw]:0.40319999999999995/0.10079999999999999 App-Penalties:{} Gw-Penalties:{} Time:
1706.234] = 827.6831
Clust[Count:6 FailSteps:1 ProcLim[app/gw]:0.48383999999999994/0.12095999999999998 App-Penalties:{} Gw-Penalties:{} Time:
1329.65] = 826.39886
Clust[Count:7 FailSteps:2 ProcLim[app/gw]:0.6773759999999999/0.16934399999999997 App-Penalties:{} Gw-Penalties:{} Time:
2406.059] = 825.8747
ished in :10732.306

New Iteration of Training Algorithm Started

-> Sorting Correlation Results - Not Dir Stop -
Clustering Parameters: Count:0 FailSteps:0 ProcLim[app/gw]:0.2/0.05 App-Penalties:{} Gw-Penalties:{} ----—--—-—-
Weight Apps:{}Weight Gws:{}

-> Clustering

Eps Vals:[4.779385345431594, 8.687495095131421, 0.39081097496998274]
Eps Search Results - Best Eps:6.7334404 BestValid: 5.166666666666667
Cluster 1 Size:22 Apps: [32, ... 45]
Cluster 12 Size:27 Apps: [69, ... 179]
Unallocated Apps: []

-> GA Cluster 1 GwCount:12 AppCnt:22 Size:49 Gens:424
The best of the Population 877 is: 54.259914

-> GA Cluster 12 GwCount:14 AppCnt:27 Size:49 Gens:435
The best of the Population 2170 is: 68.890045
Fog Utility: 822.46436

178 Optimisation Run-time Log Example

D:\Doktori\Thesis\Thesis Draft\Appendix\Log.txt Wednesday, August 22, 2018 12:26 PM

Direction Clustering Done in :987.234

New lIteration of Training Algorithm Started

Apps Correlations: {Constraints=0.0, RequirementSim=0.0046098243147765635, ResourceShare=0.059628816649848336,
UtilityWeights=0.0, MessageRate=-0.013079744769438892, Distance=-0.029517770385124122, UnitLoad=-0.005124293261328776}
Gws Correlations: {Capabilities=0.0, SharedRes=0.031574343489963276, PerfToULoad=-0.023927695874447683,
BaselLoad=0.0039904809171321855, CapToULoad=-0.020199237714567705}
-> Sorting Correlation Results - Dir Stop - - Worse Util
Underfitted App Solution, Solving...
Underfitted Gw Solution, Solving...
Clustering Parameters: Count:4 FailSteps:2 ProcLim[app/gw]:0.40319999999999995/0.10079999999999999 App-Penalties:{}
Gw-Penalties:{} ---—----—--—-
Weight Apps:{ResourceShare=0.4827881117929911, Distance=-0.5172118882070088}Weight Gws:{SharedRes=0.6318911023239071,
PerfToULoad=-0.21571606599339305, CapToULoad=-0.15239283168269985}
-> Clustering
Eps Vals:[-2.275732308110839, -0.20688475528280353, 0.20688475528280356]
Eps Search Results - Best Eps:-1.4481932 BestValid: 14.081632653061225
Cluster 1 Size:39 Apps: [128, ... 131]
Cluster 7 Size:42 Apps: [320, ... 63]
Unallocated Apps: []
-> GA Cluster 1 GwCount:16 AppCnt:39 Size:50 Gens:461
The best of the Population 2448 is: 102.66226

-> GA Cluster 7 GwCount:15 AppCnt:42 Size:51 Gens:467
The best of the Population 2366 is: 106.1328

Fog Utility: 826.51874

Direction Clustering Done in :1796.233

Results:
Clust[Count:0 FailSteps:0 ProcLim[app/gw]:0.2/0.05 App-Penalties:{} Gw-Penalties:{} Time: 987.234] = 822.46436
Clust[Count:1 FailSteps:0 ProcLim[app/gw]:0.2/0.05 App-Penal s:{} Gw-Penalties:{} Time: 1552.933] = 826.12396
Clust[Count:2 FailSteps:1 ProcLim[app/gw]:0.24/0.06 App-Penalties:{} Gw-Penalties:{} Time: 1111.917] = 827.0043
Clust[Count:3 FailSteps:1 ProcLim[app/gw]:0.288/0.072 App-Penalties:{} Gw-Penalties:{} Time: 1374.718] = 826.58
Clust[Count:4 FailSteps:2 ProcLim[app/gw]:0.40319999999999995/0.10079999999999999 App-Penalties:{} Gw-Penalties:{} Time:
1796.233] = 826.51874

Method Finished in :6823.156

-> Clustering
Cluster 1 Apps: [1,-.. 5]
Cluster 12 Apps: [288, 289, 290, 293, 262, 295, 302, 307, 277, 278, 310, 312, 281, 313, 314, 316, 317, 286, 318]
Unallocated Apps: []
-> GA Cluster 1 GwCount:10 AppCnt:29 Size:49 Gens:439
The best of the Population 1011 is: 75.047325
-> GA Cluster 12 GwCount:8 AppCnt:19 Size:49 Gens:418
The best of the Population 880 is: 49.15943
Fog Utility: 826.2746
Finished Clusering Part in:443.6
Unalocated Apps: []
Total Elapsed Time:443.6
Utilities...
Init: 827.0043
Random: 828.2746
Dist: 0.0
Sample: 827.6831
GA: 822.14844

X.Init = [0.012 ... 6823.15];
X.Random = [0.0 0.171 0.18 443.594];
X.Dist = [0.0 21.328 21.331];
X_Sample = [0.0 ... 10732.299];
X.GA = [3.625 ... 14818.575];
Y.Init = [0.0 ... 827.0043 1;
Y.Random = [0.0 0.0 0.0 826.2746];
Y.Dist = [0.0 0.0 0.0];

Y.Sample = [0.0 ... 827.6831];

Y.GA = [0.0 ... 822.14844];

size = 3; type = 1;
XMat(size,type) = X;
YMat(size,type) = Y;

Fig. E.1 Performance Test Log Example

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Research Context
	1.2 Research Problem
	1.3 Research Aims and Objectives
	1.4 Novelty and Contribution
	1.5 Thesis Structure

	2 Research Background
	2.1 Internet of Things
	2.2 Fog and Cloud Computing
	2.3 Industry 4.0 Requirements
	2.4 Gateway and Middleware Platforms
	2.5 Application and System Model
	2.6 Deployment in the Fog
	2.6.1 Load Balancing
	2.6.2 Global optimisation Techniques

	2.7 Network Analysis and Clustering
	2.8 Summary

	3 Methodology
	3.1 Introduction
	3.2 Research Methodology
	3.3 Fog of Things Platform
	3.4 Application and Gateway Model
	3.5 Clustering based optimisation method
	3.6 Validation and Analysis

	4 Fog of Things Platform
	4.1 General View and Platform Requirements
	4.1.1 Protocol Agnostic Device Messaging
	4.1.2 Regional Connections and Messaging
	4.1.3 Multi-Cloud Tenancy
	4.1.4 Modular Application Deployment
	4.1.5 Application Migration, Clustering and Testing functionalities

	4.2 Generic Gateway Architecture
	4.2.1 Local Messaging Service
	4.2.2 Cloud Controller and Local Resources
	4.2.3 M2M Communication and Registration
	4.2.4 Application Container
	4.2.5 Regional Communications and Clustering
	4.2.6 Cloud Connection and Management
	4.2.7 Migration and Message Routing on the Platform
	4.2.8 Application and Gateway Monitoring

	4.3 Architecture Implementation
	4.3.1 Device Drivers
	4.3.2 Application Container
	4.3.3 Regional and Cloud Drivers

	4.4 Summary

	5 Application and Gateway Model
	5.1 Overview of Model
	5.2 Gateway Load
	5.3 Application Load
	5.4 Delay Model
	5.5 Reliability Model
	5.6 Parameter Analysis
	5.6.1 Processing Capacity and Speedup
	5.6.2 Driver and Message Loads
	5.6.3 Processing Delays
	5.6.4 Networking Delays

	5.7 Utility Functions
	5.8 Summary

	6 Deployment Optimisation
	6.1 Introduction
	6.2 Problem Description and Categorisation
	6.3 Overview of Approaches
	6.4 Deployment validation and Utility Calculation
	6.5 Modified Genetic Algorithm based Method
	6.6 Clustering
	6.6.1 Random Clustering
	6.6.2 Distance based clustering
	6.6.3 Weights and Attributes based clustering
	6.6.4 Eps Value Estimation and Improvements

	6.7 Resource Allocation
	6.7.1 Random but Fair
	6.7.2 Shared Resource Based Allocation
	6.7.3 Weighted Property based Resource Allocation
	6.7.4 Correlation and Weights based Resource allocation

	6.8 Proposed Methods
	6.8.1 Connections based Clustering and Resource Allocation
	6.8.2 Iterative Correlation based Clustering and Optimisation
	6.8.3 Sampled Data based Correlation and Weight Calculation

	6.9 Summary

	7 Evaluation and Analysis
	7.1 Analysis and Replication: AME Case Study
	7.1.1 Use Case Description
	7.1.2 Analysis Parameters
	7.1.3 Replication Data Analysis
	7.1.4 Network Analysis
	7.1.5 Replication Analysis

	7.2 Model Validation
	7.2.1 Single Deployment Validation
	7.2.2 Bundled Deployment Validation
	7.2.3 Migration Deployment Validation

	7.3 Physical System Deployment Optimisation
	7.4 Evaluation Use Cases
	7.4.1 Delay Optimisation scenario
	7.4.2 Weighted Multi-Component Utility scenario
	7.4.3 Capability Constraint and Utility scenario

	7.5 Testing Parameter Selection
	7.5.1 GA Parameter Selection
	7.5.2 Clustering Parameter Selection

	7.6 Performance Analysis
	7.6.1 Small Scale Tests
	7.6.2 Medium Scale Tests
	7.6.3 Large Scale Tests
	7.6.4 Conclusions

	7.7 Scalability Analysis
	7.7.1 Delay Scenario
	7.7.2 Multi-Parameter Scenario
	7.7.3 Capability Scenario
	7.7.4 Conclusions

	7.8 Component Evaluation
	7.8.1 Resource Allocation
	7.8.2 Clustering
	7.8.3 Weights Tuning
	7.8.4 Conclusions

	8 Conclusions and Future Work
	8.1 Results Overview
	8.1.1 Platform Review
	8.1.2 Model Review
	8.1.3 Deployment Method Review

	8.2 Answer to Research Questions
	8.3 Future Work and Directions

	References
	Appendix A VisJs Visualisation Platform
	Appendix B Code Snippets
	Appendix C Example Deployment File
	Appendix D Physical Backbone of the System
	Appendix E Optimisation Run-time Log Example

